Skip to main content
Log in

Numerical evaluation of human exposure to 3.5-GHz electromagnetic field by considering the 3GPP-like channel features

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

Human exposure to 3.4–3.6-GHz radiofrequency (RF) electromagnetic field (EMF), which is the frequency band utilized by trial test of the fifth-generation mobile communication systems (5G), has been numerically analyzed in the study. The study evaluated the EMF exposure of this frequency band by taking into account of the channel features. Two exposure scenarios were reconstructed according to the technical specification on channel modeling from the 3rd Generation Partnership Project. The channel features of the reconstructed EMF were numerically validated. The equivalent source principle and the finite-difference time-domain method were applied to calculate the RF energy specific absorption (SA) using three human models. The results revealed that the exposure scenarios with various channel features affected whole-body SA (WBSA) by about 50–70%. The variation was mainly introduced by the configuration of the incident waves defined by the channel models. Dosimetric difference between the two exposure scenarios for some tissues has been presented and discussed. The results demonstrated that the anatomy of the model was also a factor influencing SA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahlbom, A., Bergqvist, U., Bernhardt, J. H., Cesarini, J. P., Grandolfo, M., Hietanen, M., Mckinlay, A. F.et al. (1998). Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300GHz). Health Phys, 74, 494–522

  2. Martínez-Búrdalo M, Martin A, Sanchis A, Villar R (2009) FDTD assessment of human exposure to electromagnetic fields from WiFi and bluetooth devices in some operating situations. Bioelectromagnetics 30(2):142–151

    Article  Google Scholar 

  3. Krayni A, Hadjem A, Vermeeren G, Sibille A, Roblin C, Joseph W et al (2017) Modeling and characterization of the uplink and downlink exposure in wireless networks. Int J Antennas Propag. https://doi.org/10.1155/2017/8243490

  4. Li C, Yang L, Lu B, Xie Y, Wu T (2016) A reverberation chamber for rodents’ exposure to wideband radiofrequency electromagnetic fields with different small-scale fading distributions. Electromagn Biol Med 35(1):30–39

    Article  Google Scholar 

  5. Conil E, Hadjem A, Gati A, Wong MF, Wiart J (2011) Influence of plane-wave incidence angle on whole body and local exposure at 2100 MHz. IEEE Trans Electromagn Compat 53(1):48–52

    Article  Google Scholar 

  6. Vermeeren G, Joseph W, Martens L (2013) Statistical multi-path exposure method for assessing the whole-body SAR in a heterogeneous human body model in a realistic environment. Bioelectromagnetics 34(3):240–251

    Article  Google Scholar 

  7. Sharma S, Chakraborty M, Singhal M, Jha M (2014) A review of 4G and 5G in context of future of wireless communication. Int J Comput Appl 95(22):1–4

    Google Scholar 

  8. Farhang A, Marchetti N, Figueiredo F, Miranda JP (2014) Massive MIMO and waveform design for 5th generation wireless communication systems. In: 1st international conference on 5G for ubiquitous connectivity, pp 70–75

    Google Scholar 

  9. Jang J, Chung M, Hwang SC, Lim YG, Yoon HJ, Oh T et al (2016) Smart small cell with hybrid beamforming for 5G: theoretical feasibility and prototype results. IEEE Wirel Commun 23(6):124–131

    Article  Google Scholar 

  10. Mondal B, Thomas TA, Visotsky E, Vook FW, Ghosh A, Nam YH et al (2015) 3D channel model in 3GPP. IEEE Commun Mag 53(3):16–23

    Article  Google Scholar 

  11. Agiwal M, Roy A, Saxena N (2016) Next generation 5G wireless networks: a comprehensive survey. IEEE Commun Surv Tutor 18(3):1617–1655

    Article  Google Scholar 

  12. Rappaport TS, Sun S, Shafi M (2017) 5G channel model with improved accuracy and efficiency in mmWave bands. IEEE 5G Tech Focus 1(1):1–6

    Google Scholar 

  13. Medbo J, Börner K, Haneda K, Hovinen V, Imai T, Järvelainen J, et al. (2014). Channel modelling for the fifth generation mobile communications. In 8th European Conference on Antennas and Propagation (EuCAP), 219–223

  14. Qualcomm. (2017). Qualcomm, ZTE and China mobile announce collaboration on 5G NR trials at 3.5 GHz to accelerate wide-scale 5G deployments in China. Qualcomm press release. https://www.qualcomm.com/news/releases/2017/02/21/qualcomm-zte-and-china-mobile-announce-collaboration-5g-nr-trials-35-ghz. Accessed 24 Nov 2018

  15. Sue M. Why the 3.5 GHz CBRS band could be a breakthrough for 5G. sdxcentral. https://www.sdxcentral.com/articles/news/3-5-ghz-cbrs-band-breakthrough-5g/2017/03/. Accessed 24 Nov 2018

  16. Study on 3D channel model for LTE. (2017). 3GPP TR 37.977 V14.1, 2017. 3rd Generation Partnership Project

  17. Li C, Chen Z, Yang L, Lv B, Liu J, Varsier N et al (2015) Generation of infant anatomical models for evaluating electromagnetic field exposures. Bioelectromagnetics 36(1):10–26

    Article  Google Scholar 

  18. Wu T, Tan L, Shao Q, Zhang C, Zhao C, Li Y et al (2011) Chinese adult anatomical models and the application in evaluation of RF exposures. Phys Med Biol 56(7):2075–2089

    Article  Google Scholar 

  19. Wu T, Tan L, Shao Q, Li Y, Yang L, Zhao C et al (2012) Slice-based supine to standing postured deformation for Chinese anatomical models and the dosimetric results by wide band frequency electromagnetic field exposure: morphing. Radiat Prot Dosim 154(1):26–30

    Article  Google Scholar 

  20. Wu T, Tan L, Shao Q, Li Y, Yang L, Zhao C et al (2012) Slice-based supine-to-standing posture deformation for Chinese anatomical models and the dosimetric results with wide band frequency electromagnetic field exposure: simulation. Radiat Prot Dosim 154(1):31–36

    Article  Google Scholar 

  21. Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41(11):2231–2249

    Article  Google Scholar 

  22. Taflove A, & Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method. Artech house

  23. Mix J, Dixon J, Popovic Z, Piket-May M (1999) Incorporating non-linear lumped elements in FDTD: the equivalent source method. Int J Numer Model Electron Netw Devices Fields 12:157–170

    Article  MATH  Google Scholar 

  24. Wu T, Hadjem A, Wong MF, Gati A, Picon O, Wiart J (2010) Whole-body new-born and young rats’ exposure assessment in a reverberating chamber operating at 2.4 GHz. Phys Med Biol 55(6):1619–1630

    Article  Google Scholar 

  25. Bernardi P, Cavagnaro M, D’Atanasio P, Di Palma E, Pisa S, Piuzzi E (2002) FDTD, multiple-region/FDTD, ray-tracing/FDTD: a comparison on their applicability for human exposure evaluation. Int J Numer Model: Electron Netw Devices Fields 15(5–6):579–593

    Article  MATH  Google Scholar 

  26. Rylander T, Bondeson A (2002) Application of stable FEM-FDTD hybrid to scattering problems. IEEE Trans Antennas Propag 50(2):141–144

    Article  MATH  Google Scholar 

  27. Chakarothai J, Wang J, Fujiwara O, Wake K, Watanabe S (2014) A hybrid MoM/FDTD method for dosimetry of small animal in reverberation chamber. IEEE Trans Electromagn Compat 56(3):549–558

    Article  Google Scholar 

  28. Ilvonen S, Toivonen T, Toivo T, Uusitupa T, Laakso I (2008) Numerical specific absorption rate analysis and measurement of a small indoor base station antenna. Microw Opt Technol Lett 50(10):2516–2521

    Article  Google Scholar 

  29. Roy JE (2012) On using a closed box as the integration surface with the FDTD method. IEEE Trans Antennas Propag 60(5):2375–2379

    Article  Google Scholar 

  30. Ministry of Industry and Information Technology of the People’s Republic of China (2013). Provisions of the People’s Republic of China on radio spectrum allocations

  31. Li C, Yang L, Li CH, Xie Y, Wu T (2015) Dosimetric variability of the rats’ exposure to electromagnetic pulses. Electromagn Biol Med 34(4):334–343

    Article  Google Scholar 

  32. Gandhi OP, Gao BQ, Chen JY (1993) A frequency-dependent finite-difference time-domain formulation for general dispersive media. IEEE Trans Microw Theory Tech 41(4):658–665

    Article  Google Scholar 

  33. Fan, W., De Lisbona, X. C., Sun, F., Nielsen, J. O., Knudsen, M., & Pedersen, G. (2013). Emulating spatial characteristics of MIMO channels for OTA testing. IEEE Trans Antennas Propag, 61(8), 4306–4314

Download references

Funding

The work is supported by grants from National Natural Science Foundation Project (Grant Nos. 61371187 and 61671158) and National Science and Technology Major Project (No. 2018ZX100301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongning Wu.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Xu, C., Wang, R. et al. Numerical evaluation of human exposure to 3.5-GHz electromagnetic field by considering the 3GPP-like channel features. Ann. Telecommun. 74, 25–33 (2019). https://doi.org/10.1007/s12243-018-0682-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-018-0682-z

Keywords

Navigation