Annals of Telecommunications

, Volume 74, Issue 1–2, pp 25–33 | Cite as

Numerical evaluation of human exposure to 3.5-GHz electromagnetic field by considering the 3GPP-like channel features

  • Congsheng Li
  • Chunying Xu
  • Ruixin Wang
  • Lei Yang
  • Tongning WuEmail author


Human exposure to 3.4–3.6-GHz radiofrequency (RF) electromagnetic field (EMF), which is the frequency band utilized by trial test of the fifth-generation mobile communication systems (5G), has been numerically analyzed in the study. The study evaluated the EMF exposure of this frequency band by taking into account of the channel features. Two exposure scenarios were reconstructed according to the technical specification on channel modeling from the 3rd Generation Partnership Project. The channel features of the reconstructed EMF were numerically validated. The equivalent source principle and the finite-difference time-domain method were applied to calculate the RF energy specific absorption (SA) using three human models. The results revealed that the exposure scenarios with various channel features affected whole-body SA (WBSA) by about 50–70%. The variation was mainly introduced by the configuration of the incident waves defined by the channel models. Dosimetric difference between the two exposure scenarios for some tissues has been presented and discussed. The results demonstrated that the anatomy of the model was also a factor influencing SA.


Fifth-generation mobile communication systems (5G) Human model Channel modeling Specific absorption Radiofrequency exposure 


Funding information

The work is supported by grants from National Natural Science Foundation Project (Grant Nos. 61371187 and 61671158) and National Science and Technology Major Project (No. 2018ZX100301).

Supplementary material

12243_2018_682_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 15 kb)


  1. 1.
    Ahlbom, A., Bergqvist, U., Bernhardt, J. H., Cesarini, J. P., Grandolfo, M., Hietanen, M., Mckinlay, A. al. (1998). Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300GHz). Health Phys, 74, 494–522Google Scholar
  2. 2.
    Martínez-Búrdalo M, Martin A, Sanchis A, Villar R (2009) FDTD assessment of human exposure to electromagnetic fields from WiFi and bluetooth devices in some operating situations. Bioelectromagnetics 30(2):142–151CrossRefGoogle Scholar
  3. 3.
    Krayni A, Hadjem A, Vermeeren G, Sibille A, Roblin C, Joseph W et al (2017) Modeling and characterization of the uplink and downlink exposure in wireless networks. Int J Antennas Propag.
  4. 4.
    Li C, Yang L, Lu B, Xie Y, Wu T (2016) A reverberation chamber for rodents’ exposure to wideband radiofrequency electromagnetic fields with different small-scale fading distributions. Electromagn Biol Med 35(1):30–39CrossRefGoogle Scholar
  5. 5.
    Conil E, Hadjem A, Gati A, Wong MF, Wiart J (2011) Influence of plane-wave incidence angle on whole body and local exposure at 2100 MHz. IEEE Trans Electromagn Compat 53(1):48–52CrossRefGoogle Scholar
  6. 6.
    Vermeeren G, Joseph W, Martens L (2013) Statistical multi-path exposure method for assessing the whole-body SAR in a heterogeneous human body model in a realistic environment. Bioelectromagnetics 34(3):240–251CrossRefGoogle Scholar
  7. 7.
    Sharma S, Chakraborty M, Singhal M, Jha M (2014) A review of 4G and 5G in context of future of wireless communication. Int J Comput Appl 95(22):1–4Google Scholar
  8. 8.
    Farhang A, Marchetti N, Figueiredo F, Miranda JP (2014) Massive MIMO and waveform design for 5th generation wireless communication systems. In: 1st international conference on 5G for ubiquitous connectivity, pp 70–75Google Scholar
  9. 9.
    Jang J, Chung M, Hwang SC, Lim YG, Yoon HJ, Oh T et al (2016) Smart small cell with hybrid beamforming for 5G: theoretical feasibility and prototype results. IEEE Wirel Commun 23(6):124–131CrossRefGoogle Scholar
  10. 10.
    Mondal B, Thomas TA, Visotsky E, Vook FW, Ghosh A, Nam YH et al (2015) 3D channel model in 3GPP. IEEE Commun Mag 53(3):16–23CrossRefGoogle Scholar
  11. 11.
    Agiwal M, Roy A, Saxena N (2016) Next generation 5G wireless networks: a comprehensive survey. IEEE Commun Surv Tutor 18(3):1617–1655CrossRefGoogle Scholar
  12. 12.
    Rappaport TS, Sun S, Shafi M (2017) 5G channel model with improved accuracy and efficiency in mmWave bands. IEEE 5G Tech Focus 1(1):1–6Google Scholar
  13. 13.
    Medbo J, Börner K, Haneda K, Hovinen V, Imai T, Järvelainen J, et al. (2014). Channel modelling for the fifth generation mobile communications. In 8th European Conference on Antennas and Propagation (EuCAP), 219–223Google Scholar
  14. 14.
    Qualcomm. (2017). Qualcomm, ZTE and China mobile announce collaboration on 5G NR trials at 3.5 GHz to accelerate wide-scale 5G deployments in China. Qualcomm press release. Accessed 24 Nov 2018
  15. 15.
    Sue M. Why the 3.5 GHz CBRS band could be a breakthrough for 5G. sdxcentral. Accessed 24 Nov 2018
  16. 16.
    Study on 3D channel model for LTE. (2017). 3GPP TR 37.977 V14.1, 2017. 3rd Generation Partnership Project Google Scholar
  17. 17.
    Li C, Chen Z, Yang L, Lv B, Liu J, Varsier N et al (2015) Generation of infant anatomical models for evaluating electromagnetic field exposures. Bioelectromagnetics 36(1):10–26CrossRefGoogle Scholar
  18. 18.
    Wu T, Tan L, Shao Q, Zhang C, Zhao C, Li Y et al (2011) Chinese adult anatomical models and the application in evaluation of RF exposures. Phys Med Biol 56(7):2075–2089CrossRefGoogle Scholar
  19. 19.
    Wu T, Tan L, Shao Q, Li Y, Yang L, Zhao C et al (2012) Slice-based supine to standing postured deformation for Chinese anatomical models and the dosimetric results by wide band frequency electromagnetic field exposure: morphing. Radiat Prot Dosim 154(1):26–30CrossRefGoogle Scholar
  20. 20.
    Wu T, Tan L, Shao Q, Li Y, Yang L, Zhao C et al (2012) Slice-based supine-to-standing posture deformation for Chinese anatomical models and the dosimetric results with wide band frequency electromagnetic field exposure: simulation. Radiat Prot Dosim 154(1):31–36CrossRefGoogle Scholar
  21. 21.
    Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41(11):2231–2249CrossRefGoogle Scholar
  22. 22.
    Taflove A, & Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method. Artech house Google Scholar
  23. 23.
    Mix J, Dixon J, Popovic Z, Piket-May M (1999) Incorporating non-linear lumped elements in FDTD: the equivalent source method. Int J Numer Model Electron Netw Devices Fields 12:157–170CrossRefzbMATHGoogle Scholar
  24. 24.
    Wu T, Hadjem A, Wong MF, Gati A, Picon O, Wiart J (2010) Whole-body new-born and young rats’ exposure assessment in a reverberating chamber operating at 2.4 GHz. Phys Med Biol 55(6):1619–1630CrossRefGoogle Scholar
  25. 25.
    Bernardi P, Cavagnaro M, D’Atanasio P, Di Palma E, Pisa S, Piuzzi E (2002) FDTD, multiple-region/FDTD, ray-tracing/FDTD: a comparison on their applicability for human exposure evaluation. Int J Numer Model: Electron Netw Devices Fields 15(5–6):579–593CrossRefzbMATHGoogle Scholar
  26. 26.
    Rylander T, Bondeson A (2002) Application of stable FEM-FDTD hybrid to scattering problems. IEEE Trans Antennas Propag 50(2):141–144CrossRefzbMATHGoogle Scholar
  27. 27.
    Chakarothai J, Wang J, Fujiwara O, Wake K, Watanabe S (2014) A hybrid MoM/FDTD method for dosimetry of small animal in reverberation chamber. IEEE Trans Electromagn Compat 56(3):549–558CrossRefGoogle Scholar
  28. 28.
    Ilvonen S, Toivonen T, Toivo T, Uusitupa T, Laakso I (2008) Numerical specific absorption rate analysis and measurement of a small indoor base station antenna. Microw Opt Technol Lett 50(10):2516–2521CrossRefGoogle Scholar
  29. 29.
    Roy JE (2012) On using a closed box as the integration surface with the FDTD method. IEEE Trans Antennas Propag 60(5):2375–2379CrossRefGoogle Scholar
  30. 30.
    Ministry of Industry and Information Technology of the People’s Republic of China (2013). Provisions of the People’s Republic of China on radio spectrum allocationsGoogle Scholar
  31. 31.
    Li C, Yang L, Li CH, Xie Y, Wu T (2015) Dosimetric variability of the rats’ exposure to electromagnetic pulses. Electromagn Biol Med 34(4):334–343CrossRefGoogle Scholar
  32. 32.
    Gandhi OP, Gao BQ, Chen JY (1993) A frequency-dependent finite-difference time-domain formulation for general dispersive media. IEEE Trans Microw Theory Tech 41(4):658–665CrossRefGoogle Scholar
  33. 33.
    Fan, W., De Lisbona, X. C., Sun, F., Nielsen, J. O., Knudsen, M., & Pedersen, G. (2013). Emulating spatial characteristics of MIMO channels for OTA testing. IEEE Trans Antennas Propag, 61(8), 4306–4314Google Scholar

Copyright information

© Institut Mines-Télécom and Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Congsheng Li
    • 1
  • Chunying Xu
    • 1
  • Ruixin Wang
    • 1
  • Lei Yang
    • 1
  • Tongning Wu
    • 1
    Email author
  1. 1.China Academy of Information and Communications TechnologyBeijingChina

Personalised recommendations