Advertisement

Annals of Telecommunications

, Volume 73, Issue 9–10, pp 549–558 | Cite as

Time-constrained anycast routing under short contact duration in delay-tolerant networks

  • Tuan LeEmail author
  • Mario Gerla
Article
  • 82 Downloads

Abstract

Delay-tolerant networks (DTNs) are sparse mobile ad hoc networks, in which there is typically no complete path between the source and destination. Anycast is an important group communication paradigm for numerous DTN applications such as resource discovery and information exchange in emergency or crisis situations. Unlike unicast and multicast, which have been studied extensively in DTNs, few prior works have addressed the DTN anycast routing problem. Furthermore, they often ignore the time constraint and assume long contact durations in formulating the relay selection strategy. In this paper, we study a single-copy time-constrained anycast (TCA) routing under short contact duration. We address two key issues: (1) to which next hop relay node should messages be forwarded and (2) in which order should messages be forwarded. To reduce the transmission cost, we select relay nodes from both current and past contacts based on the one-hop and two-hop delivery probabilities, respectively. We derive the delivery probability from the distribution of inter-contact time and contact duration time. We address the case of exponential and Pareto distribution, which are the most popular assumptions in literature. For the message scheduling, messages with the highest delivery probability are prioritized to be transmitted first. Extensive simulation results based on Cabspotting and MIT Reality traces show that our scheme can achieve up to 29% higher delivery rate, 24% lower delay, and 36% lower transmission cost compared to other anycast routing strategies.

Keywords

Delay-tolerant networks Anycast routing Exponential distribution Contact duration Inter-contact time 

References

  1. 1.
    Fall K (2003) In: Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications. ACM, pp 27–34Google Scholar
  2. 2.
    Juang P, Oki H, Wang Y, Martonosi M, Peh LS, Rubenstein D (2002) In: ACM Sigplan notices, vol 37. ACM, pp 96–107Google Scholar
  3. 3.
    Tovar A, Friesen T, Ferens K, McLeod B (2010) In: 2010 23rd Canadian Conference on electrical and computer engineering (CCECE). IEEE, pp 1–5Google Scholar
  4. 4.
    Motani M, Srinivasan V, Nuggehalli PS (2005) In: Proceedings of the 11th annual international conference on mobile computing and networking. ACM, pp 243–257Google Scholar
  5. 5.
    Partan J, Kurose J, Levine BN (2007) ACM SIGMOBILE Mob Comput Commun Rev 11(4):23CrossRefGoogle Scholar
  6. 6.
    Park S, Kim S, Yoo Y (2014) J Korean Instit Commun Inform Sci 39(10):645Google Scholar
  7. 7.
    Lu Z, Fan J (2010) In: 2010 International conference on computer design and applications (ICCDA), vol 5. IEEE, pp V5–231Google Scholar
  8. 8.
    Amin R, Ripplinger D, Mehta D, Cheng BN (2015) IEEE Commun Mag 53(10):32CrossRefGoogle Scholar
  9. 9.
    Ott J, Kutscher D (2005) In: INFOCOM 2005. 24th Annual Joint Conference of the IEEE computer and communications societies. Proceedings IEEE, vol 3. IEEE, pp 1849–1862Google Scholar
  10. 10.
    Wu C, Ji Y, Ohzahata S, Kato T (2015) In: 2015 IEEE 26th Annual International symposium on personal, indoor, and mobile radio communications (PIMRC). IEEE, pp 1934–1939Google Scholar
  11. 11.
    Zhuo X, Li Q, Gao W, Cao G, Dai Y (2011) In: 2011 19th IEEE International conference on network protocols (ICNP). IEEE, pp 236–245Google Scholar
  12. 12.
    Burgess J, Gallagher B, Jensen D, Levine BN (2006) In: INFOCOM, vol 6, pp 1–11Google Scholar
  13. 13.
    Le T, Gerla M (2017) In: 2017 16th Annual Mediterranean Ad Hoc networking workshop (Med-Hoc-Net). IEEE, pp 1–6Google Scholar
  14. 14.
    Zhu H, Fu L, Xue G, Zhu Y, Li M, Ni LM (2010) In: INFOCOM, 2010 Proceedings IEEE. IEEE, pp 1–5Google Scholar
  15. 15.
    Wang E, Yang Y, Wu J (2015) J Parallel Distrib Comput 86:1CrossRefGoogle Scholar
  16. 16.
    Le T, Kalantarian H, Gerla M (2016) In: 2016 IEEE 17th International symposium on a world of wireless, mobile and multimedia networks (WoWMoM). IEEE, pp 1–9Google Scholar
  17. 17.
    Eagle N, Pentland AS (2005) CRAWDAD dataset mit/reality (v. 2005-07-01) Downloaded from https://crawdad.org/mit/reality/20050701.  https://doi.org/10.15783/C71S31
  18. 18.
    Conan V, Leguay J, Friedman T (2007) In: Proceedings of the 1st international conference on autonomic computing and communication systems. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), p 19Google Scholar
  19. 19.
    Chaintreau A, Hui P, Crowcroft J, Diot C, Gass R, Scott J (2005) Pocket switched networks: real-world mobility and its consequences for opportunistic forwarding. Tech. rep. University of Cambridge, Computer LaboratoryGoogle Scholar
  20. 20.
    Katabi D, Wroclawski J (2000) ACM SIGCOMM Comput Commun Rev 30(4):3CrossRefGoogle Scholar
  21. 21.
    Stoica I, Adkins D, Zhuang S, Shenker S, Surana S (2002) In: ACM SIGCOMM Computer communication review, vol 32. ACM, pp 73–86Google Scholar
  22. 22.
    Ballani H, Francis P (2005) In: ACM SIGCOMM Computer communication review, vol 35. ACM, pp 301–312Google Scholar
  23. 23.
    Park VD, Macker JP (1999) Anycast routing for mobile services. Tech. rep., DTIC DocumentGoogle Scholar
  24. 24.
    Wang J, Zheng Y, Jia W (2003) In: 14th IEEE Proceedings on personal, indoor and mobile radio communications, 2003. PIMRC 2003, vol 1. IEEE, pp 221–225Google Scholar
  25. 25.
    Wang J, Zheng Y, Leung C, Jia W (2003) In: 2003 IEEE 58th on Vehicular technology conference, 2003. VTC 2003-Fall, vol 5. IEEE, pp 3094–3098Google Scholar
  26. 26.
    Perkins CE, Royer EM (1999). In: Proceedings of the Second IEEE workshop on mobile computer systems and applications WMCSA ’99. http://dl.acm.org/citation.cfm?id=520551.837511. IEEE Computer Society, Washington, DC, pp 90–
  27. 27.
    Johnson DB (2003) draft-ietf-manet-dsr-09 txtGoogle Scholar
  28. 28.
    Ko YB, Vaidya NH (2003) Comput Netw 41:743CrossRefGoogle Scholar
  29. 29.
    Le T, Gerla M (2017) Int J Parallel, Emergent Distrib Syst, 1–15Google Scholar
  30. 30.
    Le T, Gerla M (2016) In: 2016 Mediterranean Ad Hoc networking workshop (Med-Hoc-Net). IEEE, pp 1–7Google Scholar
  31. 31.
    Nelson SC, Kravets R (2010) In: Proceedings of the 5th ACM workshop on challenged networks, CHANTS ’10. ACM, pp 63–70Google Scholar
  32. 32.
    Xiao M, Huang L, Liu A, Chen W (2010) In: 2010 International Conference on communications and mobile computing (CMC), vol 3. IEEE, pp 442–446Google Scholar
  33. 33.
    da Silva ER, Guardieiro PR (2008) In: 11th International Conference on computer and information technology, 2008. ICCIT 2008. IEEE, pp 65–71Google Scholar
  34. 34.
    Piorkowski M, Sarafijanovic-Djukic N, Grossglauser M (2009) CRAWDAD dataset epfl/mobility (v. 2009-02-24). Downloaded from http://crawdad.org/epfl/mobility/20090224/cab.  https://doi.org/10.15783/C7J010. Traceset: cab
  35. 35.
    Lee K, Yi Y, Jeong J, Won H, Rhee I, Chong S (2010) In: INFOCOM, 2010 Proceedings IEEE. IEEE, pp 1–9Google Scholar
  36. 36.
    Nguyen QH, Robert C (2013) Series expansions for sums of independent pareto random variables. Tech. rep., Working Paper SAF 2012.16, 2013. http://docs.isfa.fr/labo/2013.7.pdf
  37. 37.
    Gonzalez MC, Hidalgo CA, Barabasi AL (2008) Nature 453(7196):779CrossRefGoogle Scholar
  38. 38.
    Song C, Qu Z, Blumm N, Barabási AL (2010) Science 327(5968):1018MathSciNetCrossRefGoogle Scholar
  39. 39.
    Schönfelder S., Axhausen KW (2010) Urban rhythms and travel behaviour: spatial and temporal phenomena of daily travel. Ashgate Publishing Ltd.Google Scholar
  40. 40.
    Dalpatadu RJ, Singh A (2008) Int J Appl Sci Technol 5(4):8Google Scholar
  41. 41.
    Keränen A, Ott J, Kärkkäinen T (2009). In: SIMUTools ’09: Proceedings of the 2nd international conference on simulation tools and techniques. ICST, New YorkGoogle Scholar
  42. 42.
    Lindgren A, Doria A, Schelén O (2003) ACM SIGMOBILE Mob Comput Commun Rev 7(3):19CrossRefGoogle Scholar
  43. 43.
    Vahdat A, Becker D et al. (2000) Epidemic routing for partially connected ad hoc networks. Tech. rep., Technical Report CS-200006 Duke UniversityGoogle Scholar
  44. 44.
    Tournoux PU, Leguay J, Benbadis F, Conan V, De Amorim MD, Whitbeck J (2009) In: INFOCOM 2009, IEEE. IEEE, pp 1116–1124Google Scholar
  45. 45.
    Boldrini C, Conti M, Passarella A (2014) Comput Commun 48:56CrossRefGoogle Scholar

Copyright information

© Institut Mines-Télécom and Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUCLALos AngelesUSA

Personalised recommendations