Annals of Telecommunications

, Volume 73, Issue 3–4, pp 169–192 | Cite as

A survey on the communication and network enablers for cloud-based services: state of the art, challenges, and opportunities

  • George Patrick XavierEmail author
  • Burak Kantarci


The wide adoption of the cloud computing concept has resulted in major impacts in both fixed and mobile communication networks leading to cutting-edge research to provide appropriate network architecture and protocols, along with resource management mechanisms. Cloud computing research has been witnessing the interplay between the system and communication aspects in order to offer powerful inter-networking and interoperability between the systems and networks. This paper reviews recent works focusing on architectural design issues, virtualization solutions, and challenges in cloud communications and networking. We mainly discuss the architectural challenges and solutions in today’s leading cloud communication technologies starting with network virtualization, software-defined networking (SDN), network function virtualization (NFV), and SDN-enabled NFV solutions. Furthermore, considering the benefits of cloud computing for mobile communications, we overview the cloud-RAN architecture for radio access networks, along with its support for various existing and future wireless communication technologies including future 5G wireless networks. We study each cloud communication technology by focusing on the existing works from the standpoint of objectives, challenges, and solutions. Furthermore, for all cloud communication concepts, we present a thorough discussion on the open issues and opportunities.


Cloud communications Cloud networking Network virtualization Software-defined networking Network function virtualization Cloud radio access networks 5G 



We would like to thank the authors of the references in [25, 49, 58, 149] for giving us their consent to redraw the corresponding figures in those references. In addition, we would like to acknowledge ETSI for the specification in [39] which formed the basis for Fig. 3 in this article.

Funding Information

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) under Grant RGPIN/2017-04032.


  1. 1.
    Amazon - ELB [online] Accessed 12 Jan. 2018
  2. 2.
    Nakao A (2012) Invited talk: Deeply Programmable Network (DPN) through Advanced Network Virtualization. International Symposium on Network Virtualization, Kyoto. Available Online: Google Scholar
  3. 3.
    (2004) Data center : Load balancing data center [online]
  4. 4.
    Agarwal K, Dixon C, Rozner E, Carter J (2014) Shadow macs: scalable label-switching for commodity ethernet. In: Proceedings of the third workshop on hot topics in software defined networking, hotSDN ’14. ACM, New York, pp 157–162Google Scholar
  5. 5.
    Agrawal R, Bedekar A, Kalyanasundaram S, Kolding T, Kroener H, Ram V (2016) Architecture principles for cloud ran. In: IEEE 83Rd vehicular technology conference (VTC spring), pp 1–5Google Scholar
  6. 6.
    Akyildiz IF, Lee A, Wang P, Luo M, Chou W (2014) A roadmap for traffic engineering in software defined networks. Comput Netw 71:1–30CrossRefGoogle Scholar
  7. 7.
    Al-Dulaimi A, Anpalagan A, Bennis M, Vasilakos AV (2015) 5g green communications: C-ran provisioning of comp and femtocells for power management. In: IEEE International conference on ubiquitous wireless broadband (ICUWB), pp 1–5Google Scholar
  8. 8.
    Ali ST, Sivaraman V, Radford A, Jha S (2013) Securing networks using software defined networking: a survey. IEEE Trans Reliab 64(3):1–12Google Scholar
  9. 9.
    Appelman M et al Performance analysis of OpenFlow hardware.
  10. 10.
    Araujo JT, Landa R, Clegg RG, Pavlou G (2014) Software-defined network support for transport resilience. In: IEEE Network operations and management symposium (NOMS), pp 1–8Google Scholar
  11. 11.
    Atiewi S, Yussof S (2014) Comparison between cloud SIM and green cloud in measuring energy consumption in a cloud environment. In: 2014 3rd international conference on advanced computer science applications and technologies, pp 9–14Google Scholar
  12. 12.
    Bannour F, Souihi S, Mellouk A (2017) Distributed SDN control: survey, taxonomy and challenges. IEEE Commun Surv Tutorials PP(99):1–1Google Scholar
  13. 13.
    Banzai T, Koizumi H, Kanbayashi R, Imada T, Hanawa T, Sato M (2010) D-cloud: design of a software testing environment for reliable distributed systems using cloud computing technology. In: 2010 10Th IEEE/ACM international conference on cluster, cloud and grid computing, pp 631–636Google Scholar
  14. 14.
    Bari MF, Boutaba R, Esteves R, Granville LZ, Podlesny M, Rabbani MG, Zhang Q, Zhani MF (2013) Data center network virtualization: a survey. IEEE Commun Surv Tutorials 15(2):909–928CrossRefGoogle Scholar
  15. 15.
    Benton K, Camp LJ, Small C (2013) OpenFlow vulnerability assessment. In: Proceedings of the second ACM SIGCOMM workshop on hot topics in software defined networking, hotSDN ’13. ACM, New York, pp 151–152Google Scholar
  16. 16.
    Berde P, Gerola M, Hart J, Higuchi Y, Kobayashi M, Koide T, Lantz B, O’Connor B, Radoslavov P, Snow W, Parulkar G (2014) ONOS: towards an open, distributed SDN OS. In: Proceedings of the third workshop on hot topics in software defined networking, hotSDN ’14. ACM, New York, pp 1–6Google Scholar
  17. 17.
    Bhattacharya B, Das D (2013) SDN based architecture for QoS enabled services across networks with dynamic service level agreement. In: 2013 IEEE International conference on advanced networks and telecommunications systems (ANTS), pp 1–6Google Scholar
  18. 18.
    Botelho F, Bessani A, Ramos FMV, Ferreira P (2014) On the design of practical fault-tolerant SDN controllers. In: 2014 Third european workshop on software defined networks, pp 73–78Google Scholar
  19. 19.
    Botelho FA, Ramos FMV, Kreutz D, Bessani AN (2013) On the feasibility of a consistent and fault-tolerant data store for SDNs. In: 2013 Second european workshop on software defined networks, pp 38–43Google Scholar
  20. 20.
    Boutaba R, Fonseca N, Kliazovich D, Limam N (2015) Cloud networking and communications II. Comput Netw 93:405–407CrossRefGoogle Scholar
  21. 21.
    Braun W, Menth M (2014) Wildcard compression of inter-domain routing tables for OpenFlow-based software-defined networking. In: 2014 Third european workshop on software defined networks, pp 25–30Google Scholar
  22. 22.
    Cai Z, Cox AL, Ng TSE Maestro: a system for scalable openflow control. Rice University Technical Report TR10-11Google Scholar
  23. 23.
    Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R (2011) CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw Pract Exper 41(1):23–50CrossRefGoogle Scholar
  24. 24.
    Cannistra R, Carle B, Johnson M, Kapadia J, Meath Z, Miller M, Young D, DeCusatis C, Bundy T, Zussman G, Bergman K, Carranza A, Sher-DeCusatis C, Pletch A, Ransom R (2014) Enabling autonomic provisioning in SDN cloud networks with NFV service chaining. In: OFC 2014, pp 1–3Google Scholar
  25. 25.
    Carapinha J, Jiménez J (2009) Network virtualization: a view from the bottom. In: Proceedings of the 1st ACM workshop on Virtualized infrastructure systems and architectures, pp 73–80Google Scholar
  26. 26.
    Casado M, Foster N, Guha A (2014) Abstractions for software-defined networks. Commun ACM 57 (10):86–95CrossRefGoogle Scholar
  27. 27.
    Casado M, Freedman MJ, Pettit J, Luo J, McKeown N, Shenker S (2007) Ethane: taking control of the enterprise. SIGCOMM Comput Commun Rev 37(4):1–12CrossRefGoogle Scholar
  28. 28.
    Chandrasekaran B, Benson T (2014) Tolerating SDN application failures with legosdn. In: Proceedings of the third workshop on hot topics in software defined networking, hotSDN ’14. ACM, New York, pp 235–236Google Scholar
  29. 29.
    Checko A, Christiansen HL, Yan Y, Scolari L, Kardaras G, Berger MS, Dittmann L (2015) Cloud RAN for mobile networks—a technology overview. IEEE Commun Surv Tutorials 17(1):405–426CrossRefGoogle Scholar
  30. 30.
    Chen J, Zheng X, Rong C (2015) Survey on software-defined networking. In: Qiang W, Zheng X, Hsu CH (eds) Cloud computing and big data. Springer International Publishing, Cham, pp 115–124Google Scholar
  31. 31.
    Chowdhury N, Boutaba R (2009) Network virtualization: state of the art and research challenges. Communications Magazine IEEE 47(7):20–26CrossRefGoogle Scholar
  32. 32.
    Chowdhury NMK, Boutaba R (2010) A survey of network virtualization. Comput Netw 54(5):862–876CrossRefzbMATHGoogle Scholar
  33. 33.
    Clayman S, Maini E, Galis A, Manzalini A, Mazzocca N (2014) The dynamic placement of virtual network functions. In: IEEE Network operations and management symposium (NOMS), pp 1–9Google Scholar
  34. 34.
    Cotroneo D, Simone LD, Iannillo AK, Lanzaro A, Natella R, Fan J, Ping W (2014) Network function virtualization: challenges and directions for reliability assurance. In: IEEE International symposium on software reliability engineering workshops, pp 37–42Google Scholar
  35. 35.
    Curtis AR, Mogul JC, Tourrilhes J, Yalagandula P, Sharma P, Banerjee S (2011) DevoFlow: scaling flow management for high-performance networks. SIGCOMM Comput Commun Rev 41(4):254–265CrossRefGoogle Scholar
  36. 36.
    Duan Q, Ansari N, Toy M (2016) Software-defined network virtualization: an architectural framework for integrating SDN and NFV for service provisioning in future networks. IEEE Netw 30(5):10–16CrossRefGoogle Scholar
  37. 37.
    El Ferkouss O, Snaiki I, Mounaouar O, Dahmouni H, Ali RB, Lemieux Y, Omar C (2011) A 100gig network processor platform for openflow. In: Proceedings of the 7th international conference on network and services management, CNSM ’11. International Federation for Information Processing, Laxenburg, pp 286–289Google Scholar
  38. 38.
    Emmerich P, Raumer D, Beifuß A, Erlacher L, Wohlfart F, Runge TM, Gallenmüller S, Carle G (2015) Optimizing latency and CPU load in packet processing systems. In: 2015 International symposium on performance evaluation of computer and telecommunication systems (SPECTS), pp 1–8Google Scholar
  39. 39.
    Fayazbakhsh SK, Sekar V, Yu M, Mogul JC (2013) FlowTags: enforcing network-wide policies in the presence of dynamic middlebox actions. In: Proceedings of the second ACM SIGCOMM workshop on Hot topics in software defined networking (HotSDN ’13). ACM, New York, pp 19–24Google Scholar
  40. 40.
    Fayazbakhsh SK, Chiang L, Sekar V, Yu M, Mogul JC (2014) Enforcing network-wide policies in the presence of dynamic middlebox actions using flowtags. In: Proceedings of the 11th USENIX conference on networked systems design and implementation, NSDI’14. USENIX Association, Berkeley, pp 533–546Google Scholar
  41. 41.
    Ferrazani Mattos DM, Duarte OCMB (2016) AuthFlow: authentication and access control mechanism for software defined networking. Ann Telecommun 71(11–12):607–615CrossRefGoogle Scholar
  42. 42.
    Fonseca P, Bennesby R, Mota E, Passito A (2012) A replication component for resilient OpenFlow-based networking. In: 2012 IEEE Network operations and management symposium, pp 933–939Google Scholar
  43. 43.
    Fujita H, Matsuno Y, Hanawa T, Sato M, Kato S, Ishikawa Y (2012) DS-Bench Toolset: tools for dependability benchmarking with simulation and assurance. In: IEEE/IFIP International conference on dependable systems and networks (DSN 2012), pp 1–8Google Scholar
  44. 44.
    Gember-Jacobson A, Viswanathan R, Prakash C, Grandl R, Khalid J, Das S, Akella A (2014) OpenNF: enabling innovation in network function control. In: Proceedings of the 2014 ACM conference on SIGCOMM, SIGCOMM ’14. ACM, New York, pp 163–174Google Scholar
  45. 45.
    Gesbert D, Kountouris M, Heath RW, Chae bC, Salzer T (2007) Shifting the MIMO paradigm. IEEE Signal Process Mag 24(5):36–46CrossRefGoogle Scholar
  46. 46.
    Goguen J (1999) An introduction to algebraic semiotics, with application to user interface design. In: Nehaniv CL (ed) Computation for metaphors, analogy, and agents. Springer Berlin Heidelberg, Berlin, pp 242–291Google Scholar
  47. 47.
    Gourov V, Gourova E (2015) Cloud network architecture design patterns. In: Proceedings of the 20th european conference on pattern languages of programs, euroPLop ’15. ACM, New York, pp 1:1–1:11Google Scholar
  48. 48.
    Greenberg A, Hamilton J, Maltz DA, Patel P (2009) The cost of a cloud : research problems in data center networks. ACM SIGCOMM Computer Communication Review 39(1):68–73CrossRefGoogle Scholar
  49. 49.
    Hadzialic M, Dosenovic B, Dzaferagic M, Musovic J (2013) Cloud-RAN: innovative radio access network architecture. In: Proceedings ELMAR-2013, pp 115–120Google Scholar
  50. 50.
    Hakiri A, Gokhale A, Berthou P, Schmidt DC, Gayraud T (2014) Software-defined networking: challenges and research opportunities for future internet. Comput Netw 75(PartA):453–471CrossRefGoogle Scholar
  51. 51.
    Han B, Gopalakrishnan V, Ji L, Lee S (2015) Network function virtualization: challenges and opportunities for innovations. IEEE Commun Mag 53(2):90–97CrossRefGoogle Scholar
  52. 52.
    Hassas Yeganeh S, Ganjali Y (2012) Kandoo: a framework for efficient and scalable offloading of control applications. In: Proceedings of the first workshop on hot topics in software defined networks, pp 19–24Google Scholar
  53. 53.
    Horvath R, Nedbal D, Stieninger M (2015) A literature review on challenges and effects of software defined networking. Procedia Computer Science 64:552–561CrossRefGoogle Scholar
  54. 54.
    Hoydis J, ten Brink S, Debbah M (2011) Massive MIMO: how many antennas do we need? CoRR arXiv:1107.1709
  55. 55.
    Hu F, Hao Q, Bao K (2014) A survey on software defined networking (SDN) and OpenFlow: from concept to implementation. IEEE Commun Surv Tutorials 16(c):1–1Google Scholar
  56. 56.
    Hu F, Qiu M, Li J, Grant T, Tylor D, McCaleb S, Butler L, Hamner R (2011) A review on cloud computing: design challenges in architecture and security. J Comput Inf Technol 19(1):25– 55CrossRefGoogle Scholar
  57. 57.
    Hwang K (1992) Advanced computer architecture: parallelism, scalability, programmability, 1st edn. McGraw-Hill Higher Education, New YorkGoogle Scholar
  58. 58.
    Kreutz D, Ramos FMV, Veríssimo PE, Rothenberg CE, Azodolmolky S, Uhlig S (2015) Software-defined networking: a comprehensive survey. In: Proceedings of the IEEE, vol 103, no. 1, pp 14–76Google Scholar
  59. 59.
    Ismail MA, Ismail MF, Ahmed H (2015) Openstack cloud performance optimization using linux services. In: 2015 International conference on cloud computing (ICCC), pp 1–4Google Scholar
  60. 60.
    Jafarian JH, Al-Shaer E, Duan Q (2012) OpenFlow random host mutation: transparent moving target defense using software defined networking. In: Proceedings of the first workshop on hot topics in software defined networks, hotSDN ’12. ACM, New York, pp 127–132Google Scholar
  61. 61.
    Jain R, Paul S (2013) Network virtualization and software defined networking for cloud computing: a survey. IEEE Commun Mag 51(11):24–31CrossRefGoogle Scholar
  62. 62.
    Jennings B, Stadler R (2015) Resource management in clouds: survey and research challenges. J Netw Syst Manag 23(3):567–619CrossRefGoogle Scholar
  63. 63.
    Jensen M, Schwenk J, Gruschka N, Iacono LL (2009) On technical security issues in cloud computing. In: 2009 IEEE International conference on cloud computing, pp 109–116Google Scholar
  64. 64.
    Joshi P, Gunawi HS, Sen K (2011) Prefail: a programmable tool for multiple-failure injection. SIGPLAN Not 46(10):171–188CrossRefGoogle Scholar
  65. 65.
    Kantarci B, Mouftah HT (2012) Designing an energy-efficient cloud network [Invited]. J Opt Commun Networking 4(11):B101CrossRefGoogle Scholar
  66. 66.
    Kaur T, Chana I (2015) Energy efficiency techniques in cloud computing: a survey and taxonomy. ACM Comput Surv 48(2):1–46CrossRefGoogle Scholar
  67. 67.
    Keeney J, Meer vdS, Fallon L (2014) Towards real-time management of virtualized telecommunication networks. In: 10Th international conference on network and service management (CNSM) and workshop, pp 388–393Google Scholar
  68. 68.
    Kim J, Dally WJ, Abts D (2007) Flattened butterfly: a cost-efficient topology for high-radix networks. SIGARCH Comput Archit News 35(2):126–137CrossRefGoogle Scholar
  69. 69.
    Kirkpatrick K (2013) Software-defined networking. Commun ACM 56(9):16CrossRefGoogle Scholar
  70. 70.
    Kitindi EJ, Fu S, Jia Y, Kabir A, Wang Y (2017) Wireless network virtualization with SDN and C-RAN for 5g networks: requirements, opportunities, and challenges. IEEE Access 5:19,099–19,115CrossRefGoogle Scholar
  71. 71.
    Kliazovich D, Bouvry P, Khan SU (2012) GreenCloud: a packet-level simulator of energy-aware cloud computing data centers. J Supercomput 62(3):1263–1283CrossRefGoogle Scholar
  72. 72.
    Koponen T, Amidon K, Balland P, Casado M, Chanda A, Fulton B, Ganichev I, Gross J, Gude N, Ingram P, Jackson E, Lambeth A, Lenglet R, Li SH, Padmanabhan A, Pettit J, Pfaff B, Ramanathan R, Shenker S, Shieh A, Stribling J, Thakkar P, Wendlandt D, Yip A, Zhang R (2014) Network virtualization in multi-tenant datacenters. In: Proceedings of the 11th USENIX conference on networked systems design and implementation, NSDI’14. USENIX Association, Berkeley, pp 203–216Google Scholar
  73. 73.
    Koponen T, Casado M, Gude N, Stribling J, Poutievski L, Zhu M, Ramanathan R, Iwata Y, Inoue H, Hama T, Others, Shenker S (2010) Onix: A distributed control platform for large-scale production networks. OSDI, Oct pp 1–6Google Scholar
  74. 74.
    Krautheim FJ (2009) Private virtual infrastructure for cloud computing. In: Proceedings of the 2009 conference on Hot topics in cloud computing (HotCloud’09). USENIX Association, BerkeleyGoogle Scholar
  75. 75.
    Kreutz D, Esteves-Verissimo P, Magalhaes C, Ramos FMV (2017) The KISS principle in software-defined networking: an architecture for keeping it simple and secureGoogle Scholar
  76. 76.
    Lal S, Taleb T, Dutta A (2017) NFV: security threats and best practices. IEE Commun Mag 55 (8):211–217CrossRefGoogle Scholar
  77. 77.
    Lam CF (2010) Optical network technologies for datacenter networks (invited paper). In: 2010 Conference on optical fiber communication (OFC/NFOEC), collocated national fiber optic engineers conference, pp 1–3Google Scholar
  78. 78.
    Laoutaris N, Sirivianos M, Yang X, Rodriguez P (2011) Inter-datacenter bulk transfers with netstitcher. SIGCOMM Comput Commun Rev 41(4):74–85CrossRefGoogle Scholar
  79. 79.
    Li W, Meng W, Kwok LF (2016) A survey on OpenFlow-based software defined networks: security challenges and countermeasures. J Netw Comput Appl 68:126–139CrossRefGoogle Scholar
  80. 80.
    Li Y, Chen MIN, Member S (2015) Software-defined network function virtualization : a survey. IEEE Access 3Google Scholar
  81. 81.
    Lombardo A, Manzalini A, Schembra G, Faraci G, Rametta C, Riccobene V (2015) An open framework to enable NetFATE (Network Functions at the edge). In: Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft), London, pp 1–6Google Scholar
  82. 82.
    Lorenz C, Hock D, Scherer J, Durner R, Kellerer W, Gebert S, Gray N, Zinner T, Tran-gia P (2017) An SDN/NFV-enabled enterprise network architecture offering fine-grained security policy enforcement. IEEE Commun Mag 55(3):217–223CrossRefGoogle Scholar
  83. 83.
    Luo Y, Cascon P, Murray E, Ortega J (2009) Accelerating OpenFlow switching with network processors. In: Proceedings of the 5th ACM/IEEE symposium on architectures for networking and communications systems, ANCS ’09. ACM, New York, pp 70–71Google Scholar
  84. 84.
    Ma YW, Chen YC, Chen JL (2017) SDN-enabled network virtualization for industry 4.0 based on IoTs and cloud computing. In: 2017 19Th international conference on advanced communication technology (ICACT), pp 199–202Google Scholar
  85. 85.
    Martins J, Ahmed M, Raiciu C, Olteanu V, Honda M, Bifulco R, Huici F (2014) ClickOS and the art of network function virtualization. In: Proceedings of the 11th USENIX conference on networked systems design and implementation, NSDI’14. USENIX Association, Berkeley, pp 459–473Google Scholar
  86. 86.
    Masoudi R, Ghaffari A (2016) Software defined networks: a survey. J Netw Comput Appl 67:1–25CrossRefGoogle Scholar
  87. 87.
    Mastelic T, Oleksiak A, Claussen H, Brandic I, Pierson JM, Vasilakos AV (2014) Cloud computing: survey on energy efficiency. ACM Comput Surv 47(2):33:1–33:36CrossRefGoogle Scholar
  88. 88.
    Matias J, Garay J, Mendiola A, Toledo N, Jacob E (2014) Flownac: flow-based network access control. In: Proceedings of the 2014 third european workshop on software defined networks, EWSDN ’14. IEEE Computer Society, Washington, pp 79–84Google Scholar
  89. 89.
    Matias J, Garay J, Toledo N, Unzilla J, Jacob E (2015) Toward an SDN-enabled NFV architecture. IEEE Commun Mag 53(4):187–193CrossRefGoogle Scholar
  90. 90.
    Mattisson S (2017) Overview of 5g requirements and future wireless networks. In: ESSCIRC 2017 - 43Rd IEEE european solid state circuits conference, pp 1–6Google Scholar
  91. 91.
    McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, Turner J (2008) OpenFlow: enabling innovation in campus networks. SIGCOMM Comput Commun Rev 38 (2):69–74CrossRefGoogle Scholar
  92. 92.
    Mehraghdam S, Keller M, Karl H (2014) Specifying and placing chains of virtual network functions. CoRR arXiv:1406.1058
  93. 93.
    Mekky H, Hao F, Mukherjee S, Lakshman TV, Zhang ZL (2017) Network function virtualization enablement within SDN data plane. In: IEEE INFOCOM 2017 - IEEE Conference on computer communications, pp 1–9Google Scholar
  94. 94.
    Memon G, Varvello M, Laufer R, Lakshman T, Li J, Zhang M (2013) Flashflow: a GPU-based fully programmable OpenFlow switch. Tech. rep., University of OregonGoogle Scholar
  95. 95.
    Mijumbi R, Serrat J, Gorricho JL, Bouten N, De Turck F, Boutaba R (2016) Network function virtualization: state-of-the-art and research challenges. In: IEEE communications surveys & tutorials. Firstquarter, vol 18, no. 1, pp 236–262Google Scholar
  96. 96.
    Mogul JC, AuYoung A, Banerjee S, Popa L, Lee J, Mudigonda J, Sharma P, Turner Y (2013) Corybantic: towards the modular composition of SDN control programs. In: Proceedings of the twelfth ACM workshop on hot topics in networks, hotnets-XII. ACM, New York, pp 1:1–1:7Google Scholar
  97. 97.
    Monsanto C, Reich J, Foster N, Rexford J, Walker D (2013) Composing software-defined networks. In: Proceedings of the 10th USENIX conference on networked systems design and implementation, nsdi’13. USENIX Association, Berkeley, pp 1–14Google Scholar
  98. 98.
    Moura J, Hutchison D (2016) Review and analysis of networking challenges in cloud computing. J Netw Comput Appl 60:113–129CrossRefGoogle Scholar
  99. 99.
    Muṅoz R., Vilalta R, Casellas R, Martinez R, Szyrkowiec T, Autenrieth A, Lõpez V, Lõpez D (2015) Integrated SDN/NFV management and orchestration architecture for dynamic deployment of virtual SDN control instances for virtual tenant networks [Invited]. J Opt Commun Networking 7(11):B62CrossRefGoogle Scholar
  100. 100.
    Mustafiz S, Palma F, Toeroe M, Khendek F (2016) A network service design and deployment process for NFV systems. In: IEEE 15Th international symposium on network computing and applications (NCA), pp 131–139Google Scholar
  101. 101.
    Nadas S (2010) Virtual router redundancy protocol (VRRP) version 3 for IPv4 and IPv6. RFC 5798.
  102. 102.
    Naous J, Erickson D, Covington GA, Appenzeller G, McKeown N (2008) Implementing an openflow switch on the NetFPGA platform. In: Proceedings of the 4th ACM/IEEE symposium on architectures for networking and communications systems, ANCS ’08. ACM, New York, pp 1–9Google Scholar
  103. 103.
    Nunes BAA, Mendonca M, Nguyen XN, Obraczka K, Turletti T (2014) A survey of software-defined networking: past, present, and future of programmable networks. IEEE Commun Surv Tutorials 16(3):1617–1634CrossRefGoogle Scholar
  104. 104.
    (2013) Open networking foundation: SDN architecture overview. Onf (1), 1–5Google Scholar
  105. 105.
    Park SH, Lee B, Shin J, Yang S (2014) A high-performance IO engine for SDN controllers. In: 2014 third european workshop on software defined networks, Budapest, pp 121–122Google Scholar
  106. 106.
    Park SH, Lee B, You J, Shin J, Kim T, Yang S (2014) Raon: recursive abstraction of OpenFlow networks. In: 2014 Third european workshop on software defined networks, pp 115–116Google Scholar
  107. 107.
    Peleg D (2000) Distributed computing: a Locality-Sensitive approach society for industrial and applied mathematicsGoogle Scholar
  108. 108.
    Peng M, Li Y, Zhao Z, Wang C (2015) System architecture and key technologies for 5G heterogeneous cloud radio access networks. IEEE Network 29(2):6–14CrossRefGoogle Scholar
  109. 109.
    Pham C, Chen D, Kalbarczyk Z, Iyer RK (2011) Cloudval: a framework for validation of virtualization environment in cloud infrastructure. In: 2011 IEEE/IFIP 41St international conference on dependable systems networks (DSN), pp 189–196Google Scholar
  110. 110.
    Piraghaj SF, Dastjerdi AV, Calheiros RN, Buyya R (2017) ContainerCloudSim: an environment for modeling and simulation of containers in cloud data centers. Software: Practice and Experience 47(4):505–521Google Scholar
  111. 111.
    Pongrácz G, Molnár L, Kis ZL (2013) Removing roadblocks from SDN: OpenFlow software switch performance on intel dpdk. In: Proceedings of the 2013 second european workshop on software defined networks, EWSDN ’13. IEEE Computer Society, Washington, pp 62–67Google Scholar
  112. 112.
    Porras P, Cheung S, Fong M, Skinner K, Yegneswaran V (2015) Securing the software-defined network control layer. In: Proceedings of the 2015 network and distributed system security symposium (NDSS)Google Scholar
  113. 113.
    Porras P, Shin S, Yegneswaran V, Fong M, Tyson M, Gu G (2012) A security enforcement kernel for OpenFlow networks. In: Proceedings of the first workshop on hot topics in software defined networks, hotSDN ’12. ACM, New York, pp 121–126Google Scholar
  114. 114.
    Rad BB, Diaby T, Rana ME (2017) Cloud computing adoption: a short review of issues and challenges. In: Proceedings of the 2017 international conference on e-commerce, e-business and e-government, ICEEG 2017. ACM, New York, pp 51–55Google Scholar
  115. 115.
    Ramos RM, Martinello M, Rothenberg CE (2013) Slickflow: resilient source routing in data center networks unlocked by openflow. In: 38Th annual IEEE conference on local computer networks, pp 606–613Google Scholar
  116. 116.
    Rauen ZI, Kantarci B, Mouftah HT (2017) Resiliency versus energy sustainability in optical inter-datacenter networks. Opt Switch Netw 23:144–155CrossRefGoogle Scholar
  117. 117.
    Rawat DB, Reddy SR (2017) Software defined networking architecture, security and energy efficiency: a survey. IEEE Commun Surv Tutorials 19(1):325–346CrossRefGoogle Scholar
  118. 118.
    Rehman RU (2003) Introduction to intrusion detection and snortGoogle Scholar
  119. 119.
    Reynaud F, Aguessy FX, Bettan O, Bouet M, Conan V (2016) Attacks against network functions virtualization and software-defined networking: state-of-the-art. In: 2016 IEEE NetSoft Conference and Workshops (NetSoft), Seoul, pp 471–476Google Scholar
  120. 120.
    Rostami A, Jungel T, Koepsel A, Woesner H, Wolisz A (2012) Oran: OpenFlow routers for academic networks. In: 2012 IEEE 13Th international conference on high performance switching and routing, pp 216–222Google Scholar
  121. 121.
    Rudell RL, Sangiovanni-Vincentelli A (1987) Multiple-valued minimization for PLA optimization. IEEE Trans Comput Aided Des Integr Circuits Syst 6(5):727–750CrossRefGoogle Scholar
  122. 122.
    Santos N, Gummadi KP, Rodrigues R (2009) Towards trusted cloud computing. In: Proceedings of the 2009 conference on hot topics in cloud computing, hotcloud’09. USENIX association, BerkeleyGoogle Scholar
  123. 123.
    Schehlmann L, Baier H (2013) COFFEE: a concept based on OpenFlow to filter and erase events of botnet activity at high-speed nodes. GI-Jahrestagung pp 2225–2239Google Scholar
  124. 124.
    Schmid S, Suomela J (2013) Exploiting locality in distributed SDN control. In: Proceedings of the second ACM SIGCOMM workshop on hot topics in software defined networking (HotSDN ’13). ACM, New York, pp 121–126Google Scholar
  125. 125.
    Schöller M, Stiemerling M, Ripke A, Bless R (2013) Resilient deployment of virtual network functions. In: 2013 5Th international congress on ultra modern telecommunications and control systems and workshops (ICUMT), pp 208–214Google Scholar
  126. 126.
    Scott-Hayward Sa, Natarajan Sb, Sezer SA (2016) Survey of security in software defined networks. Surv Tutorials 18(1):623–654CrossRefGoogle Scholar
  127. 127.
    Seeber S, Rodosek GD (2015) Towards an adaptive and effective IDS using OpenFlow. Springer International Publishing, Switzerland, pp 134–139Google Scholar
  128. 128.
    Shah H, Wankhede P, Borkar A (2013) Challenges in cloud environment. In: Patnaik S, Tripathy P, Naik S (eds) New paradigms in internet computing. Advances in intelligent systems and computing, vol 203. Springer, BerlinGoogle Scholar
  129. 129.
    Shamugam V, Murray I, Leong JA, Sidhu AS (2016) Software defined networking challenges and future direction: a case study of implementing SDN features on openstack private cloud. IOP Conference Series: Materials Science and Engineering 121(1):012,003CrossRefGoogle Scholar
  130. 130.
    Shen W, Yoshida M, Kawabata T, Minato K, Imajuku W (2014) vConductor: an NFV management solution for realizing end-to-end virtual network services. In: The 16th asia-pacific network operations and management symposium, pp 1–6Google Scholar
  131. 131.
    Shin S, Song Y, Lee T, Lee S, Chung J, Porras P, Yegneswaran V, Noh J, Kang BB (2014) Rosemary: a robust, secure, and high-performance network operating system. In: Proceedings of the 2014 ACM SIGSAC conference on computer and communications security, CCS ’14. ACM, New York, pp 78–89Google Scholar
  132. 132.
    Shin S, Yegneswaran V, Porras P, Gu G (2013) Avant-guard: scalable and vigilant switch flow management in software-defined networks. In: Proceedings of the ACM SIGSAC conference on computer & communications security, CCS ’13. ACM, New York, pp 413–424Google Scholar
  133. 133.
    Shirali-Shahreza S, Ganjali Y (2013) Efficient implementation of security applications in Openflow controller with FleXam. In: 2013 IEEE 21st annual symposium on high-performance interconnects, San Jose, CA, pp 49–54Google Scholar
  134. 134.
    Soares J, Dias M, Carapinha J, Parreira B, Sargento S (2014) Cloud4nfv: a platform for virtual network functions. In: 2014 IEEE 3Rd international conference on cloud networking (cloudnet), pp 288–293Google Scholar
  135. 135.
    Soares J, Goncalves C, Parreira B, Tavares P, Carapinha J, Barraca JP, Aguiar RL, Sargento S (2015) Toward a telco cloud environment for service functions. IEEE Commun Mag 53(2):98–106CrossRefGoogle Scholar
  136. 136.
    Subashini S, Kavitha V (2011) Review: a survey on security issues in service delivery models of cloud computing. J Netw Comput Appl 34(1):1–11CrossRefGoogle Scholar
  137. 137.
    Szabo R, Kind M, Westphal FJ, Woesner H, Jocha D, Csaszar A (2015) Elastic network functions: opportunities and challenges. IEEE Netw 29(3):15–21CrossRefGoogle Scholar
  138. 138.
    Tootoonchian A, Gorbunov S, Ganjali Y, Casado M, Sherwood R (2012) On controller performance in software-defined networks. In: Proceedings of the 2nd USENIX conference on hot topics in management of internet, cloud, and enterprise networks and services, hot-ICE’12. USENIX Association, Berkeley, pp 10–10Google Scholar
  139. 139.
    Tseitlin A (2013) The antifragile organization embracing failure to improve resilience and maximize availability. ACM Queue 11(6):1–7Google Scholar
  140. 140.
    Varghese B, Buyya R (2018) Next generation cloud computing: new trends and research directions. Futur Gener Comput Syst 79:849–861CrossRefGoogle Scholar
  141. 141.
    Veitch P, McGrath MJ, Bayon V (2015) An instrumentation and analytics framework for optimal and robust NFV deployment. IEEE Commun Mag 53(2):126–133CrossRefGoogle Scholar
  142. 142.
    Wang B, Qi Z, Ma R, Guan H, Vasilakos AV (2015) A survey on data center networking for cloud computing. Comput Netw 91:528–547CrossRefGoogle Scholar
  143. 143.
    Wang R, Butnariu D, Rexford J (2011) Openflow-based server load balancing gone wild. In: Proceedings of the 11th USENIX conference on hot topics in management of internet, cloud, and enterprise networks and services, hot-ICE’11. USENIX Association, Berkeley, pp 12–12Google Scholar
  144. 144.
    Wang R, Hu H, Yang X (2014) Potentials and challenges of c-RAN supporting multi-RATs toward 5G mobile networks. IEEE Access 2:1200–1208Google Scholar
  145. 145.
    Wanner L, Srivastava M (2014) Virus: Virtual function replacement under stress. In: Proceedings of the 6th USENIX conference on power-aware computing and systems, hotpower’14. USENIX Association, Berkeley, pp 2–2Google Scholar
  146. 146.
    Wen X, Chen Y, Hu C, Shi C, Wang Y (2013) Towards a secure controller platform for openflow applications. In: Proceedings of the second ACM SIGCOMM workshop on hot topics in software defined networking, hotSDN ’13. ACM, New York, pp 171–172Google Scholar
  147. 147.
    Wippel H (2014) Dpdk-based implementation of application-tailored networks on end user nodes. In: 2014 International conference and workshop on the network of the future (NOF), pp 1–5Google Scholar
  148. 148.
    Wood T, Gerber A, Ramakrishnan KK, Shenoy P, Van der Merwe J (2009) The case for enterprise-ready virtual private clouds. In: Proceedings of the 2009 conference on hot topics in cloud computing, hotcloud’09. USENIX association, BerkeleyGoogle Scholar
  149. 149.
    Wood T, Ramakrishnan KK, Hwang J, Liu G, Zhang W (2015) Toward a software-based network: Integrating software defined networking and network function virtualization. IEEE Network 29(3):36–41CrossRefGoogle Scholar
  150. 150.
    Wu J, Zhang Z, Hong Y, Wen Y (2015) Cloud radio access network (c-RAN): a primer. IEEE Network 29(1):35–41CrossRefGoogle Scholar
  151. 151.
    Xia M, Shirazipour M, Zhang Y, Green H, Takacs A (2015) Network function placement for nfv chaining in packet/optical datacenters. J Light Technol 33(8):1565–1570CrossRefGoogle Scholar
  152. 152.
    Yang W, Fung C (2016) A survey on security in network functions virtualization. In: IEEE NETSOFT 2016 - 2016 IEEE NetSoft conference and workshops: Software-defined infrastructure for networks, clouds, IoT and services, pp 15–19Google Scholar
  153. 153.
    Yao G, Bi J, Xiao P (2011) Source address validation solution with openflow/nox architecture. In: 2011 19Th IEEE international conference on network protocols, pp 7–12Google Scholar
  154. 154.
    Yeganeh SH, Tootoonchian A, Ganjali Y (2013) On Scalability of Software Defined Networking. IEEE Commun Mag 13(February):136–141CrossRefGoogle Scholar
  155. 155.
    Yoshida M, Shen W, Kawabata T, Minato K, Imajuku W (2014) Morsa: a multi-objective resource scheduling algorithm for nfv infrastructure. In: The 16th asia-pacific network operations and management symposium, pp 1–6Google Scholar
  156. 156.
    Yu M, Rexford J, Freedman MJ, Wang J (2010) Scalable flow-based networking with DIFANE. SIGCOMM Comput Commun Rev 41(4)Google Scholar
  157. 157.
    Yu M, Wundsam A, Raju M (2014) NOSIX: a lightweight portability layer for the SDN OS. SIGCOMM Comput Commun Rev 44(2):28–35CrossRefGoogle Scholar
  158. 158.
    Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: state-of-the-art and research challenges. Journal of Internet Services and Applications 1(1):7–18CrossRefGoogle Scholar

Copyright information

© Institut Mines-Télécom and Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The School of Electrical Engineering and Computer ScienceUniversity of OttawaOttawaCanada

Personalised recommendations