Cost estimation of a fixed network deployment over an urban territory

Abstract

This paper presents a methodology for fast and reliable cost estimation of fixed access network deployment on any urban area. It is based on theoretical results presented in former papers for distances and attenuation results, adding the most important part of cost estimation. In particular it is showed that good estimations can be obtained in a very short time. The territory to be deployed, the network architecture and the scenarios are defined by the user via two user-friendly prototypes. The first one helps defining the limit of the city and computes mathematical parameters representing its street system. The second one computes global information on the network deployment on this territory, namely the probability distributions of distances and attenuation from a node of the network to the final customer, and an evaluation of the deployment cost, once given an architecture and engineering rules. The results were compared on two real French urban territories (in Tours and Rouen) to those given by an optimization tool currently used by Orange.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Grötschel M, Raack C, Werner A (2014) Towards optimizing the deployment of optical access networks. EURO J Comput Optim 2:17–53

  2. 2.

    Chardy M, Costa MC, Faye A, Francfort S (2012) La RO au coeur du déploiement du Fibre to the Home france-télécom Orange. Bulletin de la ROADEF 29:8–11

  3. 3.

    Maniadakis D, Varoutas D (2012) Structural properties of urban street networks for FTTH deployment. CTTE, 11th Conference of Telecommunications, Media and Internet Techno-economics, Athens

    Google Scholar 

  4. 4.

    Chiu SN, Stoyan D, Kendall WS, Mecke J (2013) Stochastic geometry and its applications, 3rd edn. Wiley, New York

    Book  MATH  Google Scholar 

  5. 5.

    Kendall WS, Molchanov I (2010) New perspectives in Stochastic Geometry. Oxford University Press, London

    MATH  Google Scholar 

  6. 6.

    Møller J (1989) Random tessellations in rd. Adv Appl Probab 21:37–73

  7. 7.

    Gloaguen C, Fleischer F, Schmidt H, Schmidt V (2006) Fitting of stochastic telecommunication network models via distance measures and Monte-Carlo tests. Telecommun Syst 31(4):353–377

    Article  Google Scholar 

  8. 8.

    Maier R, Schmidt S (2003) Stationary iterated tessellations. Adv Appl Prob (SGSA) 35:337–353

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Nagel W, Weiss V (2008) Mean values for homogeneous STIT Tessellations in 3D. Image Anal Stereol 27:29–37

    Article  MATH  Google Scholar 

  10. 10.

    Courtat T (2012) Promenade dans les cartes de villes - Phénoménologie mathématique et physique de la ville : une approche géométrique. Thèse de doctorat de l’Université Paris-Diderot

  11. 11.

    Gloaguen C, Fleischer F, Schmidt S, Schmidt V (2005) Simulation of typical cox-voronoï cells with a special regard to implementation tests. Math Meth Oper 62(3):357–373

    Article  MATH  Google Scholar 

  12. 12.

    Fleischer F, Gloaguen C, Schmidt V, Voss F (2009) Simulation of the typical poisson-voronoï-cox-voronoï cell. J Stat Comput Simul 79(7):939–957

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Gloaguen C, Coupé P, Maier R, Schmidt V (2002) Stochastic modelling of urban access networks. Networks 10th International Telecommunication Network Strategy and Planning Symposium, Munich

    Google Scholar 

  14. 14.

    Gloaguen C, Voss F, Schmidt V (2011) Parametric distributions of connection lengths for the efficient analysis of fixed access networks. Ann Telecommun 66:103–118

    Article  Google Scholar 

  15. 15.

    Voss F, Gloaguen C, Fleischer F, Schmidt V (2008) Density estimation of shortest path lengths in spatial stochastic networks. Stoch Model 27(1):141–167

    Article  MATH  Google Scholar 

  16. 16.

    Gloaguen C, Schmidt H, Thiedmann R, Lanquetin JP, Schmidt V (2007) Comparison of networks trees in deterministic and random settings using different connection rules. SpaSWiN’05, Limassol

    Book  Google Scholar 

  17. 17.

    Voss F, Gloaguen C, Schmidt V (2009) Capacity distributions in spatial stochastic models for telecommunication networks. Image Analysis and Stereology Journal 28:155–163

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Neuhäuser D., Hirsch C, Gloaguen C, Schmidt V (2015) Joint distributions for total lengths of shortest paths trees in telecommunication networks. Ann Telecommun 70:221–232

    Article  Google Scholar 

  19. 19.

    Neuhäuser D., Hirsch C, Gloaguen C, Schmidt V (2015) Parametric modelling of sparse random trees using 3D copulas. Stoch Model 31(2):226–260

    Article  MATH  Google Scholar 

  20. 20.

    OpenStreetMap. http://openstreetmap.org. Accessed November 28th, 2016

  21. 21.

    Concave hull based on JTS. http://www.rotefabrik.free.fr/concave_hull/. Accessed November 28th, 2016

  22. 22.

    Duckham M, Kulik L, Worboys M, Galton A (2008) Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recog 41:3224– 3236

    Article  MATH  Google Scholar 

  23. 23.

    JOSM extension. https://josm.openstreetmap.de. Accessed November 28th, 2016

  24. 24.

    Courtat T, Douady S, Gloaguen C (2011) Mathematics and morphogenesis of cities: a geometrical approach. Phys Rev E 83(3):15:26

    MathSciNet  Article  Google Scholar 

  25. 25.

    Angilella V, Chardy M, Ben-Ameur WB (2016) Cables network design optimization for the fibre To The Home. 12th International Conference on the Design of Reliable Communication Networks (DRCN). Paris

  26. 26.

    Arcep (2015) Recueil de spécifications fonctionnelles et techniques sur les réseaux en fibre optique jusqu´ à l´ abonné en dehors des zones très denses. Version 3. http://arcep.fr/fileadmin/reprise/dossiers/fibre/CE_recueil_specification_ZMD_v3.pdf. Accessed November 28th, 2016

Download references

Acknowledgments

The authors would like to thank M Jean-Philippe Lanquetin and M Patrick Bossé (Orange engineers), as well as M Yu Hao, Ms Wenting Bao and Ms Lena Schmid (Orange interns) who participated in the development of the two prototypes.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elie Cali.

Appendix: Retreiving model parameters from reality

Appendix: Retreiving model parameters from reality

A two levels network with a number N H of high nodes HL and N L of low nodes LL is to be deployed on a territory T of area A (km 2). Let us assume that the fitting process identified a PVT model of intensity γ (km−2) for the streets and recall that the corresponding morphological vector is

$$\mathcal{M}_{theo}^{PVT}(\gamma)=(2 \gamma,3 \gamma,\gamma,\tau= 2 \sqrt{\gamma}),$$

where τ (km−1) is the average length of streets par unit area.

The averaged area of a HL serving zone is then A/N H since everything is assumed homogeneous. It contains a mean length of streets L s = τ A/N H (km) and is assimilated to the area of the typical “Poisson-Cox-Voronoï” cell centred on HL. This typical cell also contains by construction a unique HL thus giving λ H L = 1/L s (km−1) for the linear intensity of the random process that models HL locations on the streets. A key parameter is the dimensionless ratio κ = τ/λ H L = 4γ A/N H . A high (resp. low) value of κ describes a typical cell with a dense (resp. sparse) street system.

Using scaling arguments, Palm theory and statistical analysis of extensive simulation data, it is shown that for κ ≥ 1 the probability distribution of length (km) writes:

$$dis_{LH}^{PVT} (\gamma,\lambda_{HL},\ell)=\tau W_{t}(a(\kappa), b(\kappa),c(\kappa),\tau\ell) $$

where a, b, c are known polynomial functions and W t is the truncated Weibull probability distribution

$$W_{t}(a,b,c,x)=\frac{a}{b} C^{a} (\frac{x}{b}+C)^{a-1} e^{(\frac{x}{b}+C)^{a}}$$

with C = (b c/a)1/(a− 1). Explicit formulas exist for the cumulative function, quantile and average of W t distribution. Theoretical considerations provide formulas for κ < 1. Similar expressions hold for the others PLT and PDT models, using the associated expression for τ.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gloaguen, C., Cali, E. Cost estimation of a fixed network deployment over an urban territory. Ann. Telecommun. 73, 367–380 (2018). https://doi.org/10.1007/s12243-017-0614-3

Download citation

Keywords

  • Access network
  • Stochastic geometry
  • Cost analysis
  • Network planning
  • Urban street network
  • Fibre-to-the-home (FTTH)