Annals of Telecommunications

, Volume 73, Issue 5–6, pp 317–328 | Cite as

Efficient and viable intersection-based routing in VANETs on top of a virtualization layer

  • José Víctor Saiáns-Vázquez
  • Martín López-NoresEmail author
  • Yolanda Blanco-Fernández
  • Esteban Fernando Ordóñez-Morales
  • Jack Fernando Bravo-Torres
  • José Juan Pazos-Arias


Recent vehicular ad hoc network routing protocols have relied on geographic forwarding and careful selection of road segments as ways to reduce the impact of individual vehicle movements. This paper shows how a virtualization layer and a new protocol running on top of it —called VNIBR, intersection-based routing on virtual nodes—can achieve better performance than state-of-the-art approaches, enabling an efficient and computationally feasible combination of topological and geographical routing. We prove by means of network simulations that this proposal consistently ensures moderate overhead, good packet delivery ratios, and low end-to-end delays, whereas the other protocols exhibit weaknesses due to flooding processes that scale poorly, proactive routing burdens or costly location services. We also present the results of graphics processing unit profiling used to assess the computational feasibility of the different schemes in the context of a real on-board computer, which reveals new advantages about scalability and impact of computational shortages on the routing performance.


Vehicular ad hoc networks Virtualization Intersection-based routing On-board computational viability 



This work has been supported by the European Regional Development Fund (ERDF) and the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC).


  1. 1.
    Gerla M, Kleinrock L (2011) Vehicular networks and the future of the mobile Internet. Comput Netw 55 (2):457–469CrossRefGoogle Scholar
  2. 2.
    Perkins CE, Royer E M, Das S (2003) Ad hoc on-demand distance vector (AODV) routing.
  3. 3.
    Clausen T, Jacquet P (2003) Optimized link state routing protocol.
  4. 4.
    Santos R, Edwards A, Edwards R, Seed N (2005) Performance evaluation of routing protocols in vehicular ad-hoc networks. Int J Ad Hoc Ubiq Comput 1:80–91CrossRefGoogle Scholar
  5. 5.
    Kaur H, Singh H, Sharma A (2016) Geographic routing protocol: a review. Int J Grid Distrib Comput 9(2):245–254CrossRefGoogle Scholar
  6. 6.
    Lochert C, Hartenstein H, Tian J, Fussler H, Hermann D, Mauve M (June 2003) A routing strategy for vehicular ad hoc networks in city environments. In: Proceedings of IEEE intelligent vehicles symposium (IV). ColumbusGoogle Scholar
  7. 7.
    Tian J, Han L, Rothermel K, Cseh C (2003) Spatially-aware packet routing for mobile ad hoc intervehicle radio networks. In: Proceedings of IEEE intelligent transportation systems (ITS). Shanghai, pp 1546–1551Google Scholar
  8. 8.
    Zhao J, Cao G (2008) VADD: vehicle-assisted data delivery in vehicular ad hoc networks. IEEE Trans Veh Technol 57:1910–1922CrossRefGoogle Scholar
  9. 9.
    Jerbi M, Senouci S-M, Rasheed T, Ghamri-Doudane Y (2009) Towards efficient geographic routing in urban vehicular networks. IEEE Trans Veh Technol 58:5048–5059CrossRefGoogle Scholar
  10. 10.
    Brahmi N, Boussedjra M, Mouzna J, Bayart M (2010) Road connectivity-based routing for vehicular ad hoc networks. In: Proceedings of international conference on advanced technologies for communications (ATC). Ho Chi Minh CityGoogle Scholar
  11. 11.
    Chou L-D, Yang J-Y, Hsieh Y-C, Tung C-F (2010) Intersection-based routing protocol for VANET. In: Proceedings of 2nd international conference on ubiquitous and future networks (ICUFN), pp 268–272Google Scholar
  12. 12.
    Alsharif N, Cespedes S, Shen X (2013) iCAR: intersection-based connectivity-aware routing in vehicular ad hoc networks. In: Proceedings of IEEE international conference on communications (ICC). LondonGoogle Scholar
  13. 13.
    Chang J-J, Li Y-H, Liao W, Chang I-C (2012) Intersection-based routing for urban vehicular communications with traffic-light considerations. IEEE Wireless Commun 19:82–88CrossRefGoogle Scholar
  14. 14.
    Saleet H, Langar R, Naik K, Boutaba R, Nayak A, Goel N (2011) Intersection-based geographical routing protocol for VANETs: a proposal and analysis. IEEE Trans Veh Technol 60:4560–4574CrossRefGoogle Scholar
  15. 15.
    Chen T, jin Y, Pei Q, Zhang N (2014) A connectivity-aware intersection-based routing in VANETs. EURASIP J Wireless Commun Network 42Google Scholar
  16. 16.
    Qureshi K, Abdullah A, Lloret J (2016) Road perception based geographical routing protocol for vehicular ad hoc networks. Int J Distrib Sensor Netw 16:16–32Google Scholar
  17. 17.
    Saleet H, Basir O, Langar R, Boutaba R (2010) Region-based location-service-management protocol for VANETs. IEEE Trans Veh Technol 59:917–931CrossRefGoogle Scholar
  18. 18.
    Katsaros K, Dianati M, Le L (2013) Effective implementation of location services for VANETs in hybrid network infrastructures. In: Proceedings of IEEE international conference on communications (ICC) workshops. Budapest, pp 521–525Google Scholar
  19. 19.
    Nzouonta J, Rajgure N, Wang G, Borcea C (2009) VANET, routing on city roads using real-time vehicular traffic information. IEEE Trans Veh Technol 58:3609–3626CrossRefGoogle Scholar
  20. 20.
    Saiáns-Vázquez J, López-Nores M, Blanco-Fernández Y, Ordóñez-Morales E, Bravo-Torres J (2016) Variations on intersection-based routing on top of a virtualization layer for vehicular ad-hoc networks. In: Proceedings of 6th international conference on innovative computing technology (INTECH). DublinGoogle Scholar
  21. 21.
    Bravo-Torres J, López-Nores M, Blanco-Fernández Y, Pazos-Arias J, Ordóñez-Morales E (2015) VaNetLayer: a virtualization layer supporting access to web contents from within vehicular networks. J Comput Sci 11:185–195CrossRefGoogle Scholar
  22. 22.
    Bravo-Torres J, López-Nores M, Blanco-Fernández Y, Pazos-Arias J, Ramos-Cabrer M, Gil-Solla A (2016) Optimizing reactive routing over virtual nodes in VANETs. IEEE Trans Veh Technol 65(4):2274–2294CrossRefGoogle Scholar
  23. 23.
    Brown M, Gilbert S, Lynch N, Newport C, Nolte T, Spindel M (2007) The virtual node layer: a programming abstraction for wireless sensor networks. ACM SIGBED Rev 4(3):121–140CrossRefGoogle Scholar
  24. 24.
    Wu J (2011) A simulation study on using the virtual node layer to implement efficient and reliable MANET protocols. Ph.D. Thesis,
  25. 25.
    Lee K, Lee S -H, Cheung R, Lee U, Gerla M (2007) First experience with CarTorrent in a real vehicular ad hoc network testbed. In: Proceedings of mobile networking for vehicular environments. AnchorageGoogle Scholar
  26. 26.
    Lee U, Park J -S, Yeh J, Pau G, Gerla M (2006) Code torrent: content distribution using network coding in VANET. In: Proceedings of 1st international workshop on decentralized resource sharing in mobile computing and networking, in conjunction with MobiShare. New YorkGoogle Scholar
  27. 27.
    Wang S -S, Lin Y -S (2010) Performance evaluation of passive clustering based techniques for inter-vehicle communications. In: Proceedings of 19th annual wireless and optical communications conference (WOCC). ShanghaiGoogle Scholar
  28. 28.
    Nzouonta J (2009) Road-based routing in vehicular ad-hoc networks. New Jersey Institute of Technology, Ph.D. Thesis,
  29. 29.
    Behrisch M, Bieker L, Erdmann J, Krajzewicz D (2011) SUMO—simulation of urban mobility: an overview. In: Proceedings of 3rd international conference on advances in system simulation (SIMUL). BarcelonaGoogle Scholar
  30. 30.
    Mahler K, Paschalidis P, Kortke A, Peter M, Keusgen W (2013) Realistic IEEE 802.11p, transmission simulations based on channel sounder measurement data. In: Proceedings of 78th IEEE vehicular technology conference (VTC-Fall), pp 1–5Google Scholar

Copyright information

© Institut Mines-Télécom and Springer-Verlag France SAS 2017

Authors and Affiliations

  • José Víctor Saiáns-Vázquez
    • 1
  • Martín López-Nores
    • 1
    Email author
  • Yolanda Blanco-Fernández
    • 1
  • Esteban Fernando Ordóñez-Morales
    • 2
  • Jack Fernando Bravo-Torres
    • 2
  • José Juan Pazos-Arias
    • 1
  1. 1.AtlantTIC Research Center for Information and Communication Technologies, Department of Telematics EngineeringUniversity of VigoVigoSpain
  2. 2.Universidad Politécnica SalesianaCuencaEcuador

Personalised recommendations