Skip to main content
Log in

Performance analysis of a MIMO-RFID system in Nakagami-m fading channels

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

We analyze the bit error rate (BER) performance of a multiple-input multiple-output (MIMO) radio-frequency-identification (RFID) system employing orthogonal space-time block codes when the forward and backward channels exhibit independent but not necessarily identically distributed Nakagami-m fading. A closed-form upper bound on the BER performance is derived, and the corresponding diversity order is quantified. Numerical results provide some insight into the impact of several different parameters on the system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Recent measurement campaigns, e.g., [24], have revealed that multiple antennas can be accommodated on small RFID tags.

  2. The integer assumption on m h is necessary for the theoretical analysis hereafter (e.g., Eq. 14), whereas that on m g is just for analytical convenience.

References

  1. Tedjini S, Karmakar NC (2013) Chipless RFID, an emerging technology. Ann Telecommun 68:359

    Article  Google Scholar 

  2. Mi M, Mickle MH, Capelli C, Swift H (2005) RF energy harvesting with multiple antennas in the same space. IEEE Antennas Propag Mag 47(5):100–106

    Article  Google Scholar 

  3. Griffin JD, Durgin GD (2008) Gains for RF tags using multiple antennas. IEEE Trans Antennas Propag 56(2):563–570

    Article  Google Scholar 

  4. Takahashi R, Terasaki K, Honma N, Tsunekawa Y (2014) Evaluating impact of tag element spacing on bit-error-rate performance using passive MIMO testbed. In: Proc ISAP. Kaohsiung, Taiwan, pp 285–286

  5. Kim DY, Jo HS, Yoon H, Mun C, Jang B-J, Yook J-G (2010) Reverse-link interrogation range of a UHF MIMO-RFID system in Nakagami-m fading channels. IEEE Trans Ind Electron 57(4):1468–1477

  6. Karmakar NC (2010) Handbook of smart antennas for RFID systems. Wiley, New Jersey

    Book  Google Scholar 

  7. Zheng F, Kaiser T (2012) A space-time coding scheme for RFID MIMO systems. EURASIP J Embedded Syst 2012(9):1–10

    Google Scholar 

  8. Boyer C, Roy S (2013) Space time coding for backscatter RFID. IEEE Trans Wireless Commun 12 (5):2272– 2280

    Article  Google Scholar 

  9. Mindikoglu AF, Van der Veen A-J (2008) Separation of overlapping RFID signals by antenna arrays. In: Proc IEEE ICASSP. Las Vegas, pp 2737–2740

  10. Gradshteyn S, Ryzhik IM (2000) Table of integrals, series, and products. Academic Press, New York

    MATH  Google Scholar 

  11. Abramowitz M, Stegun IA (1970) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Press, New York

    MATH  Google Scholar 

  12. Tarokh V, Jafarkhani H, Calderbank AR (1999) Space-time block codes from orthogonal designs. IEEE Trans Inf Theory 45(5):1456–1467

    Article  MathSciNet  MATH  Google Scholar 

  13. Simon MK, Alouini MS (2000) Digital communication over fading channels: a unified approach to performance analysis. Wiley, New York

    Book  Google Scholar 

  14. Diggavi SN, Al-Dhahir N, Stamoulis A, Calderbank AR (2004) Great expectations: the value of spatial diversity in wireless networks. Proc IEEE 92(2):219–270

    Article  Google Scholar 

  15. Maichalernnukul K, Zheng F, Kaiser T (2014) BER analysis of a space-time coded RFID system in Nakagami-m channels. Electron Lett 50(5):405–407

    Article  Google Scholar 

  16. Karagiannidis GK (2006) A closed-form solution for the distribution of the sum of Nakagami-m random phase vectors. IEEE Commun Lett 10(12):828–830

  17. Rohatgi VK (2000) An introduction to probability theory and mathematical statistics. Wiley, New York

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported by DFG project “MIMO Backscatter-Übertragung auf Basis von Mehrantennen-Transpondern in RFID-basierten Funksystemen” with grant no. KA 1154/30-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiattisak Maichalernnukul.

Appendix

Appendix

Let us define \(\eta _{j}={\sum }_{i=1}^{L}\big {|}g_{i,j}\big {|}^{2}\) and \(\varphi _{j}=\big {|}{\sum }_{l=1}^{L}h_{j,l}\nu _{l}\big {|}^{2}\). Hence, the variable β j defined in Section 4 can be rewritten as β j = η j φ j . For notational simplicity, the subscript j in these three variables is omitted hereafter. One can show that η follows a Gamma distribution whose probability density function (PDF) is

$$ f_{\eta}(z)=\frac{m_{\text{g}}^{Lm_{\text{g}}}z^{Lm_{\text{g}}-1}}{{\Omega}_{\text{g}}^{Lm_{\text{g}}}{\Gamma}(Lm_{\text{g}})}\,\exp\!\left( \!-\frac{m_{\text{g}}z}{{\Omega}_{\text{g}}}\right);\hspace{3mm}z\geq{0}. $$
(13)

Using [16, Eq. (8)] and with the help of [17, p. 62], the PDF of φ can be obtained as

$$\begin{array}{@{}rcl@{}} f_{\varphi}(z)&=&\exp\!\left( \!-\frac{m_{\text{h}}z}{L{\Omega}_{\text{h}}}\!\right)\!\sum\limits_{p_{1}=0}^{m_{\text{h}}-1}\!\cdots\!\sum\limits_{p_{L}=0}^{m_{\text{h}}-1}\sum\limits_{q=0}^{\mathcal{S}}\prod\limits_{k=1}^{L}\left[\frac{(1\,-\,m_{\text{h}})_{p_{k}}}{(p_{k}!)^{2}}\!\left( \!\frac{{\Omega}_{\text{h}}}{4m_{\text{h}}}\!\right)^{\!p_{k}}\!\right] \\&&\quad \times\left( \!\frac{4m_{\text{h}}}{L{\Omega}_{\text{h}}}\!\right)^{\!\mathcal{S}+q+1}\!\frac{(-\mathcal{S})_{q}\,\mathcal{S}!\,z^{q}}{2^{2q+2}(q!)^{2}};\hspace{3mm}z\geq{0}. \end{array} $$
(14)

With the aid of [17, p. 140], the PDF of β can be derived as follows:

$$\begin{array}{@{}rcl@{}} f_{\beta}(z)&=&{\int}_{0}^{\infty}\frac{1}{x}\,f_{\eta}\!\left( \frac{z}{x}\right)\!f_{\varphi}(x)\,\text{d}x \\& =&\frac{m_{\text{g}}^{Lm_{\text{g}}}z^{Lm_{\text{g}}-1}}{{\Omega}_{\text{g}}^{Lm_{\text{g}}}{\Gamma}(Lm_{\text{g}})}\sum\limits_{p_{1}=0}^{m_{\text{h}}-1}\!\cdots\!\sum\limits_{p_{L}=0}^{m_{\text{h}}-1}\sum\limits_{q=0}^{\mathcal{S}}\prod\limits_{k=1}^{L}\left[\frac{(1\,-\,m_{\text{h}})_{p_{k}}}{(p_{k}!)^{2}}\left( \!\frac{{\Omega}_{\text{h}}}{4m_{\text{h}}}\!\right)^{\!p_{k}}\right]\!\left( \!\frac{4m_{\text{h}}}{L{\Omega}_{\text{h}}}\!\right)^{\!\mathcal{S}+q+1} \\&&\quad \times\frac{(-\mathcal{S})_{q}\,\mathcal{S}!}{2^{2q+2}(q!)^{2}}{\int}_{0}^{\infty}x^{q-Lm_{\text{g}}}\exp\!\left( \!-\frac{m_{\text{h}}x}{L{\Omega}_{\text{h}}}-\frac{m_{\text{g}}z}{{\Omega}_{\text{g}}x}\!\right)\text{d}x \\& =&\frac{2}{\Gamma(Lm_{\text{g}})}\sum\limits_{p_{1}=0}^{m_{\text{h}}-1}\!\cdots\!\sum\limits_{p_{L}=0}^{m_{\text{h}}-1}\sum\limits_{q=0}^{\mathcal{S}}\prod\limits_{k=1}^{L}\left[\frac{(1\,-\,m_{\text{h}})_{p_{k}}}{(p_{k}!)^{2}}\left( \!\frac{{\Omega}_{\text{h}}}{4m_{\text{h}}}\!\right)^{\!p_{k}}\right]\!\left( \!\frac{4m_{\text{h}}}{L{\Omega}_{\text{h}}}\!\right)^{\!\mathcal{S}} \\&&\quad \times\left( \!\frac{m_{\text{h}}m_{\text{g}}}{L{\Omega}_{\text{h}}{\Omega}_{\text{g}}}\!\right)^{\!(Lm_{\text{g}}+q+1)/2}\frac{(-\mathcal{S})_{q}\,\mathcal{S}!\,z^{(Lm_{\text{g}}+q-1)/2}}{(q!)^{2}}\;\mathcal{K}_{q-Lm_{\text{g}}+1}\!\left( \!2\sqrt{\frac{m_{\text{h}}m_{\text{g}}z}{L{\Omega}_{\text{h}}{\Omega}_{\text{g}}}}\right) \end{array} $$
(15)

where the last equality is obtained by using [10, Eq. (3.471.9)]. Since the MGF of β, denoted by \(\mathcal {M}_{\beta }(s)={\int }_{0}^{\infty }\exp (sz)\,f_{\beta }(z)\,\text {d}z\), is the Laplace transform of f β (z) with the exponent reversed in sign [13, p. 100], we have

$$\begin{array}{@{}rcl@{}}&&\mathcal{M}_{\beta}(-s)={\int}_{0}^{\infty}\exp(-sz)\,f_{\beta}(z)\,\text{d}z \\&& =\frac{2}{\Gamma(Lm_{\text{g}})}\sum\limits_{p_{1}=0}^{m_{\text{h}}-1}\!\cdots\!\sum\limits_{p_{L}=0}^{m_{\text{h}}-1}\sum\limits_{q=0}^{\mathcal{S}}\prod\limits_{k=1}^{L}\left[\frac{(1\,-\,m_{\text{h}})_{p_{k}}}{(p_{k}!)^{2}}\left( \!\frac{{\Omega}_{\text{h}}}{4m_{\text{h}}}\!\right)^{\!p_{k}}\right]\!\left( \!\frac{4m_{\text{h}}}{L{\Omega}_{\text{h}}}\!\right)^{\!\mathcal{S}}\!\left( \!\frac{m_{\text{h}}m_{\text{g}}}{L{\Omega}_{\text{h}}{\Omega}_{\text{g}}}\!\right)^{\!(Lm_{\text{g}}+q+1)/2} \\&&\quad \times\frac{(-\mathcal{S})_{q}\,\mathcal{S}!}{(q!)^{2}}{\int}_{0}^{\infty}z^{(Lm_{\text{g}}+q-1)/2}\exp(-sz)\,\mathcal{K}_{q-Lm_{\text{g}}+1}\!\left( 2\sqrt{\frac{m_{\text{h}}m_{\text{g}}z}{L{\Omega}_{\text{h}}{\Omega}_{\text{g}}}}\right)\text{d}z \\&& =\frac{4}{\Gamma(Lm_{\text{g}})}\sum\limits_{p_{1}=0}^{m_{\text{h}}-1}\!\cdots\!\sum\limits_{p_{L}=0}^{m_{\text{h}}-1}\sum\limits_{q=0}^{\mathcal{S}}\prod\limits_{k=1}^{L}\left[\frac{(1\,-\,m_{\text{h}})_{p_{k}}}{(p_{k}!)^{2}}\left( \!\frac{{\Omega}_{\text{h}}}{4m_{\text{h}}}\!\right)^{\!p_{k}}\right]\!\left( \!\frac{4m_{\text{h}}}{L{\Omega}_{\text{h}}}\!\right)^{\!\mathcal{S}}\!\left( \!\frac{m_{\text{h}}m_{\text{g}}}{L{\Omega}_{\text{h}}{\Omega}_{\text{g}}}\!\right)^{\!(Lm_{\text{g}}+q+1)/2} \\&&\quad \times\frac{(-\mathcal{S})_{q}\,\mathcal{S}!}{(q!)^{2}}{\int}_{0}^{\infty}r^{Lm_{\text{g}}+q}\exp(-s{r^{2}})\,\mathcal{K}_{q-Lm_{\text{g}}+1}\!\left( 2r\sqrt{\frac{m_{\text{h}}m_{\text{g}}}{L{\Omega}_{\text{h}}{\Omega}_{\text{g}}}}\right)\text{d}r \\&& =\exp\!\left( \!\frac{m_{\text{h}}m_{\text{g}}}{2L{\Omega}_{\text{h}}{\Omega}_{\text{g}}s}\!\right)\sum\limits_{p_{1}=0}^{m_{\text{h}}-1}\!\cdots\!\sum\limits_{p_{L}=0}^{m_{\text{h}}-1}\sum\limits_{q=0}^{\mathcal{S}}\prod\limits_{k=1}^{L}\left[\frac{(1-m_{\text{h}})_{p_{k}}}{(p_{k}!)^{2}}\left( \!\frac{{\Omega}_{\text{h}}}{4m_{\text{h}}}\!\right)^{\!p_{k}}\right]\!\left( \!\frac{4m_{\text{h}}}{L{\Omega}_{\text{h}}}\!\right)^{\!\mathcal{S}} \\&&\quad \times{\left( \!\frac{m_{\text{h}}m_{\text{g}}}{L{\Omega}_{\text{h}}{\Omega}_{\text{g}}s}\!\right)^{\!(Lm_{\text{g}}+q)/2}\frac{(-\mathcal{S})_{q}\,\mathcal{S}!}{q!}\;W_{\frac{Lm_{\text{g}}+q}{2},\frac{q-Lm_{\text{g}}+1}{2}}\!\left( \!\frac{m_{\text{h}}m_{\text{g}}}{L{\Omega}_{\text{h}}{\Omega}_{\text{g}}s}\!\right)} \\&& =\left( \!\frac{m_{\text{h}}m_{\text{g}}}{L{\Omega}_{\text{h}}{\Omega}_{\text{g}}s}\!\right)^{\!Lm_{\text{g}}}\,\sum\limits_{p_{1}=0}^{m_{\text{h}}-1}\!\cdots\!\sum\limits_{p_{L}=0}^{m_{\text{h}}-1}\sum\limits_{q=0}^{\mathcal{S}}\prod\limits_{k=1}^{L}\left[\frac{(1-m_{\text{h}})_{p_{k}}}{(p_{k}!)^{2}}\left( \!\frac{{\Omega}_{\text{h}}}{4m_{\text{h}}}\!\right)^{\!p_{k}}\right]\!\frac{(-\mathcal{S})_{q}\,\mathcal{S}!}{q!}\left( \!\frac{4m_{\text{h}}}{L{\Omega}_{\text{h}}}\!\right)^{\!\mathcal{S}} \\&&\quad \times{U\!\left( \!Lm_{\text{g}},Lm_{\text{g}}-q;\frac{m_{\text{h}}m_{\text{g}}}{L{\Omega}_{\text{h}}{\Omega}_{\text{g}}s}\!\right)} \end{array} $$
(16)

where the third, fourth, and last equalities are obtained by using the change of variable \(r=\sqrt {z}\), the identity in [10, Eq. (9.232.1)], and the transformation in [11, Eq. (13.1.33)], respectively. Changing the sign of s in Eq. 16 yields (8).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maichalernnukul, K., Zheng, F. & Kaiser, T. Performance analysis of a MIMO-RFID system in Nakagami-m fading channels. Ann. Telecommun. 71, 151–156 (2016). https://doi.org/10.1007/s12243-015-0481-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-015-0481-8

Keywords

Navigation