Conversion from mono-axial to isotropic measurements for assessing human exposure to electromagnetic fields of GSM/DCS/UMTS base stations

  • Mladen Koprivica
  • Aleksandar Nešković
  • Nataša Nešković
Article

Abstract

This paper proposes a way to assess total electric field strength by using mono-axial probe (instead of isotropic, tri-axial probe). When mono-axial probe is used, additional conversion factor should be applied. Consequently, the usage of mono-axial probe causes additional uncertainty in measurement results that should be taken into account. Measurement results for seven different environments show that the additional multiplicative conversion factor value of 1.95 should be applied and additional uncertainty in measurement results of 33.07 % should be taken into account.

Keywords

Mono-axial antenna measurements Tri-axial probe Isotropic measurements Human exposure Base station Measurement uncertainty 

References

  1. 1.
    Bornkessel C, Schubert M, Wuschek M, Schmidt P (2007) Determination of the general public exposure around GSM and UMTS base stations. Radiat Prot Dosim 124(1):40–47CrossRefGoogle Scholar
  2. 2.
    Troisi F, Boumis M, Grazioso P (2008) The Italian national electromagnetic field monitoring network. Аnn Telecommun 63(1-2):97–108CrossRefGoogle Scholar
  3. 3.
    Gotsis A, Papanikolaou N, Komnakos D, Yalofas A, Constantinou P (2008) Non-ionizing electromagnetic radiation monitoring in Greece. Аnn Telecommun 63(1-2):109–123CrossRefGoogle Scholar
  4. 4.
    Alanko T, Hietanen M, Nandelstadh PV (2008) Occupational exposure to RF fields from base station antennas on rooftops. Аnn Telecommun 63(1-2):125–132CrossRefGoogle Scholar
  5. 5.
    Koprivica M, Neskovic N, Neskovic A, Paunovic G (2014) Statistical analysis of electromagnetic radiation measurements in the vicinity of GSM/UMTS base station antenna masts. Radiat Prot Dosim 158(3):263–275CrossRefGoogle Scholar
  6. 6.
    Wu T, Shao Q, Yang L, Qi D, Lin J, Lin X, Yu Z (2013) A large-scale measurement of electromagnetic fields near GSM base stations in Guangxi, China for risk communication. Radiat Prot Dosim 155(1):25–31CrossRefGoogle Scholar
  7. 7.
    Kim BC, Park SO (2010) Evaluation of RF electromagnetic field exposure levels from cellular base stations in Korea. Bioelectromagnetics 31(6):495–498Google Scholar
  8. 8.
    Deatanyah P, Amoako JK, Fletcher JJ, Asiedu GO, Adjei DN, Dwapanyin GO, Amoatey EA (2012) Assessment of radiofrequency radiation within the vicinity of some GSM base stations in Ghana. Radiat Prot Dosim 151(2):218–223CrossRefGoogle Scholar
  9. 9.
    Nayyeri V, Hashemi SM, Borna M, Jalilian HR, Soleimani M (2013) Assessment of RF radiation levels in the vicinity of 60 GSM mobile phone base stations in Iran. Radiat Prot Dosim 155(2):214–244CrossRefGoogle Scholar
  10. 10.
    Loskot P, Hassanien MAM, Farjady F, Ruffini M, Payne D (2015) Long-term drivers of broadband traffic in next-generation networks. Аnn Telecommun 70(1-2):1–10CrossRefGoogle Scholar
  11. 11.
    Bembe M, Kim J, Mhlanga M, Rho JJ, Han Y (2014) Uplink spectrum resource allocation in heterogeneous networks (small cell/macrocell). Аnn Telecommun. doi:10.1007/s12243-014-0451-6 Google Scholar
  12. 12.
    WHO - World Health Organization (2010) Research Agenda on Radio Frequency Fields. WHO, GenevaGoogle Scholar
  13. 13.
    Knafl U, Lehmann H, Riederer M (2008) Electromagnetic field measurements using personal exposimeters. Bioelectromagnetics 29(2):160–162CrossRefGoogle Scholar
  14. 14.
    Bolte JF, Van der Zande G, Kamer J (2011) Calibration and uncertainties in personal exposure measurements of radiofrequency electromagnetic fields. Bioelectromagnetics 32(8):652–663CrossRefGoogle Scholar
  15. 15.
    Neubauer G, Cecil S, Giczi W, Petric B, Preiner P, Fröhlich J, Röösli M (2010) The association between exposure determined by radio frequency personal exposimeters and human exposure: a simulation study. Bioelectromagnetics 31(7):535–545CrossRefGoogle Scholar
  16. 16.
    Thuróczy G, Molnár F, Jánossy G, Nagy N, Kubinyi G, Bakos J, Szabó J (2008) Personal RF exposimetry in urban area. Аnn Telecommun 63(1-2):87–96CrossRefGoogle Scholar
  17. 17.
    European standard EN 50413:2008 (2008) Basic standard on measurement and calculation procedures for human exposure to electric, magnetic and electromagnetic fields (0 Hz–300 GHz). CENELECGoogle Scholar
  18. 18.
    European standard EN 50383:2010/AC:2013 (2013) Basic standard for the calculation and measurement of electromagnetic field strength and SAR related to human exposure from radio base stations and fixed terminal stations for wireless telecommunication systems (110 MHz–40 GHz). CENELECGoogle Scholar
  19. 19.
    European standard EN 50492:2008/A1:2014 (2014) Basic standard for the in-situ measurement of electromagnetic field strength related to human exposure in the vicinity of base stations. CENELECGoogle Scholar
  20. 20.
    European standard EN 50400:2006/A1:2012 (2012) Basic standard to demonstrate the compliance of fixed equipment for radio transmission (110 MHz–40 GHz) intended for use in wireless telecommunication networks with the basic restrictions or the reference levels related to general public exposure to radio frequency electromagnetic fields, when put into service. CENELECGoogle Scholar
  21. 21.
    Tesanovic M, Conil E, De Domenico A, Aguero R, Freudenstein F, Correia L, Bories S, Martens L, Wiedemann P, Wiart J (2014) The LEXNET project: wireless networks and EMF: paving the way for low-EMF networks of the future. IEEE Veh Technol Mag 9(2):20–28CrossRefGoogle Scholar
  22. 22.
    Diez, L., Anwar, S., Rodriguez de Lope, L., Le Hennaff, M., Toutain, Y., Agüero, R. (2014) Design and integration of a low-complexity dosimeter into the Smart City for EMF assessment. European Conference on Networks and Communications - EUCNC 2014, BolognaGoogle Scholar
  23. 23.
    Altman Z, Begasse B, Dale C, Karwowski A, Wiart J, Wong M-F, Gattoufi L (2002) Efficient models for base station antennas for human exposure assessment. IEEE Trans Electromagn Compat 44(2):588–592CrossRefGoogle Scholar
  24. 24.
    Recommendation ITU-R P.1406 (1999) Propagation effects relating to terrestrial land mobile service in the VHF and UHF bands. ITU-RGoogle Scholar
  25. 25.
    Recommendation ITU-R P.1145 (1995) Propagation data for the terrestrial land mobile service in the VHF and UHF bands. ITU-RGoogle Scholar
  26. 26.
    Tenoux T, Lostanlen Y (2012) Modeling and analysis of the radio wave depolarization in urban environments. Phys Commun 5(4):338–351CrossRefGoogle Scholar
  27. 27.
    Vilar E (1991) Depolarisation and field transmittances in indoor communications. Electron Lett 27(9):732–733CrossRefGoogle Scholar
  28. 28.
    Kürner T, Meier A (2002) Prediction of outdoor and outdoor-to-indoor coverage in urban areas at 1.8 GHz. IEEE J Sel Areas Commun 20(3):496–506CrossRefGoogle Scholar
  29. 29.
    JCGM 100:2008 (2008) Evaluation of measurement data—guide to the expression of uncertainty in measurement. Joint Committee for Guides in MetrologyGoogle Scholar
  30. 30.
    Basso G. (2009) Uncertainty in the measurement of electromagnetic field with isotropic broadband sensor and selective E&H field analyzer. NARDA Safety SolutionsGoogle Scholar
  31. 31.
    Vulević B, Osmokrović P (2010) Evaluation of uncertainty in the measurement of environmental electromagnetic fields. Radiat Prot Dosim 141(2):173–177CrossRefGoogle Scholar
  32. 32.
    Cheikh DB, Kelif J-M, Coupechoux M, Godlewski P (2013) Multicellular alamouti scheme performance in rayleigh and shadow fading. Аnn Telecommun 68(5-6):345–358CrossRefGoogle Scholar

Copyright information

© Institut Mines-Télécom and Springer-Verlag France 2015

Authors and Affiliations

  1. 1.Radiocommunications Laboratory, Telecommunications Department, School of Electrical EngineeringUniversity of BelgradeBelgradeSerbia

Personalised recommendations