Efficient and provable secure scheme for delegation of signing rights between the groups


Multi-proxy multi-signature scheme is one of the useful primitives of proxy signature scheme which enables a group of signers to delegate their signing rights to another group of their proxy signers. In literatures, only a few schemes of identity (ID)-based multi-proxy multi-signature (IBMPMS) from bilinear pairings are available but those schemes cannot be considered practical for implementations because either those are insecure or cost inefficient. Whereas due to numerous applications of IBMPMS scheme in distributed systems, grid computing, global distribution networks, etc., construction of an efficient and secure IBMPMS scheme is desired. In this paper, we propose a new construction of IBMPMS scheme from bilinear pairings. We also discuss a security model for IBMPMS schemes and prove that the proposed scheme is existential unforgeable against adaptive chosen-message and adaptive chosen-ID attacks under the computational Diffie–Hellman (CDH) assumption. Moreover, the proposed scheme is more efficient in the view of computation and operation time than the existing schemes. In particular, our scheme is up to 40 % more efficient and faster than the existing similar schemes.

This is a preview of subscription content, access via your institution.


  1. 1.

    Alomair B, Sampigethaya K, Poovendran R (2008) Efficient generic forward-secure signatures and proxy signatures, EuroPKI 2008; LNCS 5057, pp 166–181

  2. 2.

    Aranha DF, Gouvêa CPL, RELIC is an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic

  3. 3.

    Asaar MR, Salmasizadeh M, Susilo W (2014) An identity-based multi-proxy multi-signature scheme without bilinear pairing and its variants. Comput J, doi:10.1093/comjnl/bxu037

  4. 4.

    Boneh D, Franklin M (2001) Identity based encryption from the Weil pairing, CRYPTO 2001; LNCS 2139, pp 114–134

  5. 5.

    Boldyreva A, Palacio A, Warinschi B (2012) Secure proxy signature schemes, for delegation of signing rights. J Cryptol 25(1):57–115

    MATH  MathSciNet  Article  Google Scholar 

  6. 6.

    Bakker A, Steen M, Tanenbaum AS (2001) A law-abiding peer-to-peer network for free-software distribution. In: Proceedings of IEEE International Symposium on Network Computing and Applications, pp 60–67

  7. 7.

    Cha JC, Cheon JH (2003) An identity based signature from gap Diffie-Hellman groups. In: PKC 2003, LNCS 2567, Springer-Verlag, pp 18–30

  8. 8.

    Chatterjee S, Hankerson D, Menezes A (2010) On the efficiency and security of pairing-based protocols in the type 1 and type 4 settings. In: Hasan MA, Helleseth T (eds) WAIFI 2010, LNCS 6087. Springer-Verlag, Berlin Heidelberg, pp 114–134

  9. 9.

    Cao X, Kou W, Du X A pairing-free identity-based authenticated key agreement protocol with minimal message exchanges. Inf Sci 80:2895–2903

  10. 10.

    Foster I, Kesselman C, Tsudik G, Tuecke S (1998) A security architecture for computational grids. In: Proceedings of Fifth ACM Conference on Computers and Communications Security, pp 83–92

  11. 11.

    Gasser M, Goldstein A, Kaufman C, Lampson B (1989) The digital distributed system security architecture. In: NCSC89, pp 305–319

  12. 12.

    Galbraith S, Paterson K, Smart N (2008) Pairings for cryptographers. Discret Appl Math 156:3113–3121

    MATH  MathSciNet  Article  Google Scholar 

  13. 13.

    Guo S, Cao Z, Lu R An efficient ID-based multi-proxy multi-signature scheme. First Int Multi-Symposiums Comput and Computational Sci (IMSCCS’06) 2:81–88

  14. 14.

    Hess F (2002) Efficient identity based signature scheme based on pairings SAC’2002, Lecture Notes in Computer Science vol 2595. Springer-Verlag, Berlin Heidelberg, pp 310–324

  15. 15.

    He D, Chen J, Hu J (2011) An ID-based proxy signature scheme without bilinear pairings. Ann Telecommun- Annales des telecommunications 66:657–662

    Article  Google Scholar 

  16. 16.

    Herranz J, Sáez G. (2004) Revisiting fully distributed proxy signature schemes. In: Indocrypt’04, Lecture Notes in Computer Science vol 3348. Springer-Verlag, Berlin Heidelberg, pp 356– 370

  17. 17.

    Li X, Chen K (2005) ID-based multi-proxy signature, proxy multi-signature and multi-proxy multi-signature schemes from bilinear pairings. Appl Math Comput 169:437–450

    MATH  MathSciNet  Article  Google Scholar 

  18. 18.

    Leiwo J, Hanle C, Homburg P, Tanenbaum AS (2000) Disallowing unauthorized state changes of distributed shared objects. In: Proceedings of Information Security for Global Information Infrastructures (SEC00), pp 381–390

  19. 19.

    Lee B, Kim H, Kim K (2001) Strong proxy signature and its applications. In: Proceedings of SCIS, pp 603–608

  20. 20.

    Lee C-C, Lin T-H, Tsai C-S (2009) A new authenticated group key agreement in a mobile environment, Annals of Telecommunications-. Ann Telecommun 64(11-12):735–744

    Article  Google Scholar 

  21. 21.

    Malkin T, Obana S, Yung M (2004) The hierarchy of key evolving signatures and a characterization of proxy signatures. In: Cachin C, Camenisch J (eds) Eurocrypt’04, Lecture Notes in Computer Science vol 3027. Springer-Verlag, Berlin Heidelberg, pp 306–322

    Google Scholar 

  22. 22.

    Mambo M, Usuda K, Okmamoto E (1996) Proxy signatures: Delegation of the power to sign message. IEICE Trans Funct E79-A 9:1338–1354

    Google Scholar 

  23. 23.

    Neuman BC (1993) Proxy-based authorization and accounting for distributed systems. In: Proceedings of ICDCS, pp 283–291

  24. 24.

    Paterson KG (2002) ID-based signatures from pairings on elliptic curves. IEEE Electron Lett 38(18):1025–1026

    Article  Google Scholar 

  25. 25.

    Scott M (2003) MIRACL–Multiprecision Integer and Rational Arithmetic C/C++ Library. Shamus Software Ltd, Dublin, Ireland

  26. 26.

    Sahu RA, Padhye S (2010) An ID-based multi-proxy multi-signature scheme, ICCCT-2010; IEEE International Conference on Computer and Communication Technology, pp 60–63

  27. 27.

    Sahu RA, Padhye S (2011) ID-based multi-proxy multi-signature scheme from bilinear pairing, 5th WSEAS International Conference on Computer Engineering and Applications CEA’11, pp 43–48

  28. 28.

    Sahu RA, Padhye S (2013) ID-based multi-proxy multi-signature scheme provably secure in random oracle model, Trans Emerging Telecommun Technol, doi:10.1002/ett.2667

  29. 29.

    Schuldt JCN, Matsuura K, Paterson KG (2008) Proxy signatures secure against proxy key exposure. In: Cramer R (ed) Public Key Cryptography, volume 4939 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp 141–161

  30. 30.

    Shamir A (1984) Identity based cryptosystem and signature scheme. In: Proceedings Crypto’84, LNCS Vol 196, Springer-Verlag, pp 47–53

  31. 31.

    Shao Z (2012) Verifiably encrypted short signatures from bilinear maps. Ann Telecommun – Annales des telecommunications 67(9-10):437–445

  32. 32.

    Singh H, Verma GK (2012) ID-based proxy signature scheme with message recovery. J Syst Softw 85:209–214

    Article  Google Scholar 

  33. 33.

    Smart NP (2002) An identity based authenticated key agreement protocol based on the weil pairing. Electroni Lett 38(13):630– 632

    MATH  Article  Google Scholar 

  34. 34.

    Stein W (2012) Sage: Open Source Mathematical Software, (Version 4.8), The Sage Group, http://www.sagemath.org/

  35. 35.

    Tiwari N, Padhye S, He D (2013) Efficient ID-based multi-proxy multi-signature without bilinear maps in ROM. Ann Telecommun – Annales des telecommunications 68(3-4):231– 237

    Article  Google Scholar 

  36. 36.

    Varadharajan V, Allen P, Black S (1991) An analysis of the proxy problem in distributed systems. In: Proceedings of IEEE Symposium on Security and Privacy, pp 255–277

  37. 37.

    Wu T-Y, Tsai T-T, Tseng Y-M (2014) Efficient searchable ID-based encryption with a designated server. Ann Telecommun – Annales des telecommunications 69(7-8):391–402

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sahadeo Padhye.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahu, R.A., Padhye, S. & Ojha, N. Efficient and provable secure scheme for delegation of signing rights between the groups. Ann. Telecommun. 70, 369–379 (2015). https://doi.org/10.1007/s12243-015-0458-7

Download citation


  • ID-based cryptography
  • Digital signature
  • Bilinear pairings
  • Delegation of signing rights
  • Multi-proxy multi-signature scheme
  • CDHP
  • Provable security
  • Random oracle