Skip to main content
Log in

Interference and SINR coverage in spatial non-slotted Aloha networks

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

In this paper, we propose two analytically tractable stochastic-geometric models of interference in ad hoc networks using pure (non-slotted) Aloha as the medium access. In contrast to the slotted model, the interference in pure Aloha may vary during the transmission of a tagged packet. We develop closed-form expressions for the Laplace transform of the empirical average of the interference experienced during the transmission of a typical packet. Both models assume a power-law path-loss function with arbitrarily distributed fading and feature configurations of transmitters randomly located in the Euclidean plane according to a Poisson point process. Depending on the model, these configurations vary over time or are static. We apply our analysis of the interference to study the signal-to-interference-and-noise ratio (SINR) outage probability for a typical transmission in pure Aloha. The results are used to compare the performance of non-slotted Aloha to slotted Aloha, which has almost exclusively been previously studied in the context of wired networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The term spatial contention factor was introduced in [12].

  2. F = exp(− σ 2/2 + σZ) with Z a standard normal random variable.

  3. The density of F is \(f(x,k) = \frac {k^{k}}{\Gamma (k)} x^{k-1}e^{-kx}\), note that this corresponds to Nakagami (k,1) fading.

References

  1. Abate J, Whitt W (1995) Numerical inversion of laplace transforms of probability distributions. ORSA J Comput 7(1):38–43

    Article  Google Scholar 

  2. Baccelli F, Błaszczyszyn B (2009) Stochastic geometry and wireless networks. Volume I—theory, volume 3, No 3–4 of Foundations and Trends in Networking. NoW

  3. Baccelli F, Bremaud P (2003) Elements of queueing theory. Palm Martingale calculus and stochastic recurrences. Springer

  4. Baccelli F, Błaszczyszyn B, Mühlethaler P (2006) An Aloha protocol for multihop mobile wireless networks. IEEE Trans Inf Theory 52:421–436

    Article  MATH  Google Scholar 

  5. Baccelli F, Błaszczyszyn B, Mühlethaler P (2009) Stochastic analysis of spatial and opportunistic Aloha IEEE JSAC, special issue on Stochastic Geometry and Random Graphs for Wireless Networks

  6. Bertsekas D, Gallager R (2001) Data networks. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  7. Błaszczyszyn B, Keeler HP (2013) Equivalence and comparison of heterogeneous cellular networks In Proc. of PIMRC – WDN-CN

  8. Błaszczyszyn B, Mühlethaler P (2010) Stochastic analysis of non-slotted Aloha in wireless ad-hoc networks In Proc. of IEEE INFOCOM San Diego, CA

  9. Blaszczyszyn B, Karray M, Klepper F (2010) Impact of the geometry, path-loss exponent and random shadowing on the mean interference factor in wireless cellular networks Third Joint IFIP Wireless and Mobile Networking Conference (WMNC)

  10. Błaszczyszyn B, Karray M., Keeler P. (2013) Using poisson processes to model lattice cellular networks. In: Proc. of INFOCOM

  11. Ghez S, Verdu S, Schartz S (1988) Stability properties of slotted Aloha with multipacket reception capability. IEEE Trans Automat Contr vol 7:640–648

    Article  Google Scholar 

  12. Gilbert EN, Pollak HO (1960) Amplitude distribution of shot noise. Bell Syst Tech J 39(2):333–350

    Article  MathSciNet  Google Scholar 

  13. Haenggi M (2009) Outage, local throughput, and capacity of random wireless networks. IEEE Trans Wireless Comm 8:4350–4359

    Article  Google Scholar 

  14. Lowen SB, Teich MC (1990) Power-law shot noise. Infor Theory, IEEE Trans on 36(6):1302–1318

    Article  Google Scholar 

  15. Roberts, Lawrence G (1975) Outage probability in multiple access packet radio networks in the presence of fading. Comput Commun Rev 5(2):28–42. doi:10.1145/1024916.1024920

    Article  Google Scholar 

  16. Sousa ES, Silvester JA (1990) Optimum transmission ranges in a direct-sequence spread-spectrum multihop packet radio network. Sel Areas Commun, IEEE J 8(5):762–771

    Article  Google Scholar 

  17. Tse D, Viswanath P (2005) Foundamentals of wireless communication. Cambridge University Press

  18. Zorzi M, Pupolin S (1994) Outage probability in multiple access packet radio networks in the presence of fading. Veh Technol, IEEE Trans 43(3):604–610

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Mühlethaler.

Appendix

Appendix

1.1 Proof of Proposition 3.4

Each node X j , j≠0 sends only two packets which can potentially interfere with the transmission of the packet of node X 0=0, which starts at time T 0(0)=0. These are the last transmission of (X j ) which starts before time 0 (at time T j (0)) and the first transmission which starts after time 0 (at time T j (1) with T j (0) ≤ 0 < T j (1)). With this notation, we have

$$ I^{\text{mean}}= \sum\limits_{X_{j}\in{\Phi}}{F_{j}^{0}}h(T_{j}(0))/l(|X_{j}|)+ {F_{j}^{1}}h(T_{j}(1))/l(|X_{j}|) \,. $$
(7)

To simplify, let us denote \(F_{j}(0) = {F_{j}^{0}}(0)\), \(F_{j}(1) = {F_{j}^{0}}(1)\), H j (0) = h (T j (0)), H j (1) = h (T j (1)). Let us consider the marked point process

$$\tilde{\Phi}=\{X_{j},\,((F_{j}(0),F_{j}(1),H_{j}(0),H_{j}(1))): j\not=0\}\,.$$

It is an independently marked Poisson process with points {X j : j ≠ 0} and marks {((F j (0), F j (1), H j (0), H j (1))} (independent across j, given points). Note that for given j, F j (0), F j (1) and the vector (H j (0), H j (1)) are mutually independent; however, H j (0) and H j (1) are not independent from each other (we describe their joint distribution below). Let us consider the following mapping of \(\tilde {\Phi }\)

$$\tilde{\Psi}\,=\,\left\{(F_{j}(0)/l(X_{j}))^{-1},\,\left((F_{j}(1)/l(X_{j}))^{-1}, H_{j}(0),H_{j}(1)\right)\right\}$$

considered again as a marked point process, with points {V j : = F j (0) /l (X j ))−1} and marks ((F j (1)/l (X j ))−1, H j (0), H j (1)). By the displacement theorem(see ([2], Theorem 1.10) and [10]), it is again an independently marked Poisson point process, with intensity (of points) Λ(0, s) = a s 2/β where \(a=\frac {\lambda \pi {\mathbf E}[F^{\frac {2}{\beta }}]}{A^{2}}\). Regarding its marks, (H j (0), H j (1)) are identically distributed vectors (as in \(\tilde {\Phi }\)). However, (F j (1)/l (X j ))−1, being independent of (H j (0), H j (1)), has a distribution which depends on the value of V j . This distribution can be represented as follows: the law of (F j (1)/l (X j ))−1 given V j = v is equal to the law of l (R v )/F where

$${\mathbf P}(R_{v} \leq r)= \frac{1}{{\mathbf E}[F^{\frac{2}{\beta}}]} {\mathbf E}\left[\mathbb{1}{\kern-2.5pt}{\mathrm{I}}\left(F \leq \frac{l(r)}{v}\right) F^{\frac{2}{\beta}}\right]\,,$$

with F, F′ having the same distribution of fading (hence, the same as F j (0) and F j (1)). Using these observations and the well-known formula for the Laplace transform of the Poisson point process, we obtain

$$\begin{array}{@{}rcl@{}} {\mathcal{L}}_{I^{\textrm{mean}}}(\xi)&=& {\mathbf E}\left[e^{-\xi I}\right]\\&=& \exp\left(\!\!-\!\int_{0}^{\infty}\! \left(\!1\!-\! {\mathbf E}\left[e^{-\xi\left(\frac{H(0)}{v}+\frac{H(1)F}{l(R_{v})}\right)}\right] \right)\!\Lambda(\mathrm{d} v)\!\right) \!\!\!\,. \end{array} $$

We focus now on the joint distribution of (H j (0), H j (1)). Let U[x, y] be the uniform law on [x, y] and 𝜖 0, 𝜖 1 two independent exponential variables of rate 𝜖. According to the renewal theory (see, e.g., [3, Eq. 1.4.3]), we have the following result. T(0) = U[− B,0] with probability \(\frac {\epsilon B}{1+\epsilon B}\) and T(0) = −(B + 𝜖 0) with probability \(\frac {1}{1+\epsilon B}\). T(1) = B + T(0) + 𝜖 1 if T(0) > − B and T(1) = 𝜖 1 otherwise. Thus, we have H(0)=h(−U) and H (1) = h(−U+B+𝜖 1) with probability \(\frac {\epsilon B}{1+\epsilon B}\) and H(0)=h(−B𝜖 0) and H (1) = h (𝜖 1) with probability \(\frac {1}{1+\epsilon B}\), where U is U[0,B]. Consequently,

$$\begin{array}{@{}rcl@{}} &&{\kern-1.2pc}{\mathbf E}\left[{\mathbf E}[e^{-\xi(\frac{H(0)}{v}+\frac{H(1)F}{l(R_{v})}|{H}(0),H(1)]}]\right]\\&=& {\mathbf E}\left[e^{-\xi \frac{H(-0)}{v}} {\mathcal{L}}_{F/l(R_{v})}(\xi H(1))\right] \\ &=& \frac{\epsilon B}{1+\epsilon B} {\mathbf E}\left[e^{-\xi \frac{h(-U)}{v}} {\mathcal{L}}_{F/l(R_{v})}(\xi h(-U\!+\!B\!+\!\epsilon_{1}))\right] \\&&+ \frac{1}{1+\epsilon B} {\mathbf E}\left[e^{-\xi \frac{h(-B-\epsilon_{0} )}{v}} {\mathcal{L}}_{F/l(R_{v})}(\xi h(\epsilon_{1}))\right] \, \\ \end{array} $$

where

$$\begin{array}{@{}rcl@{}} {\mathcal{L}}_{F/lR_{v}}(\xi) & = & {\mathbf E}\left[{\mathbf E}[e^{-\xi F/l(R_{v})}]\right] \\ & = &\frac{1}{\mathbf{E}[F^{\prime{2/\beta}}]} {\mathbf E}\left[F^{\prime 2/\beta} e^{-\xi F/l(vF^{\prime})^{1/\beta}}\right]\,. \end{array} $$

with \(F^{\prime }\) being independent of F with the same distribution. Note that \({\mathcal {L}}_{F/l(R_{v})}(\xi )=\tilde {\mathcal {L}}(\xi /v)\), where \(\tilde {\mathcal {L}}(\xi )=\frac {1}{\mathbf {E} [F^{ \prime 2/\beta }]}{\mathbf E}\big [ {\mathcal {L}}_{F}(\xi /F^{\prime })\big ]\). Thus, we have

$$\begin{array}{@{}rcl@{}} &&{\kern-1.1pc}{\mathbf E}\left[{\mathbf E}[e^{-\xi(\frac{H(0)}{v}+\frac{H(1)F}{l(R_{v})}|{H}(0),H(1))}]\right]\\ &=& \frac{\epsilon B}{(1+\epsilon B)B} {\int_{0}^{B}} e^{-\xi h(-u)/v} {\mathbf E}[\tilde{{\mathcal{L}}}(\xi h(-u\!+\!B\!+\!\epsilon_{1})/v)] \mathrm{d} u \\ && + \frac{1}{1+\epsilon B} {\mathbf E}[e^{-\xi h((-B-\epsilon_{0})/v)}] {\mathbf E}[\tilde{{\mathcal{L}}}(\xi h(\epsilon_{1})/v)] \\ & = & \frac{\epsilon B}{(1+\epsilon B)B} {\int_{0}^{B}} e^{-\xi h(-u)/v} {\mathbf E}[\tilde{{\mathcal{L}}}(\xi h(-u\!+\!B\!+\!\epsilon_{1})/v)] \mathrm{d} u \\ && + \frac{1}{1+\epsilon B} {\mathbf E}[\tilde{{\mathcal{L}}}(\xi h(\epsilon_{1})/v)]. \end{array} $$

We set

$$\begin{array}{@{}rcl@{}} E_{1}&=& {\mathbf E}[\tilde{{\mathcal{L}}}(\xi h(-u+B+\epsilon_{1})/v)] \\ E_{2}&=& {\mathbf E}[\tilde{{\mathcal{L}}}(\xi h(\epsilon_{1})/v)]\\ F_{1}&=&\frac{1}{B} {\int_{0}^{B}} e^{-\xi h(-u)/v} E_{1} \mathrm{d} u. \end{array} $$

Let us denote η=ξ/v and calculate

$$\begin{array}{@{}rcl@{}} E_{1}&= \epsilon {{\int}_{0}^{u}} e^{-\epsilon s} \tilde{{\mathcal{L}}}\Bigl(\frac{\eta (u-s)}{ B}\Bigr) \mathrm{d} s + e^{-\epsilon u}\\ E_{2}&= \epsilon {{\int}_{0}^{B}} e^{-\epsilon s} \tilde{{\mathcal{L}}}\Bigl (\frac{\eta (B-s)}{ B}\Bigr) \mathrm{d} s + e^{-\epsilon B}\\ \end{array} $$

and

$$\begin{array}{@{}rcl@{}} F_{1}&=&\frac{\epsilon}{B} {{\int}_{0}^{B}} e^{-\eta (1-u/B)} {{\int}_{0}^{u}} e^{-\epsilon s} \tilde{{\mathcal{L}}}\Bigl(\eta\frac{u-s}{B}\Bigr) \mathrm{d} s \mathrm{d} u \\&&+ \frac{1}{B} {{\int}_{0}^{B}} e^{-\eta(1-u/B)} e^{-\epsilon u}\mathrm{d} u\,. \end{array} $$

Using the change of variable \(\frac {u-s}{B}=t\), we obtain

$$\begin{array}{@{}rcl@{}} F_{1}&=& {\int_{0}^{1}} \frac{\epsilon B}{\eta- \epsilon B}e^{\epsilon Bt-\eta}\bigl(e^{\eta-\epsilon B}-e^{t\eta-t\epsilon B }\bigr) {\mathcal{\tilde{L}}}(\eta t) \mathrm{d} t \\ &&+ \frac{e^{-\eta}}{\epsilon B -\eta }(1-e^{\eta-\epsilon B})\\ &=& \frac{\epsilon B e^{-\epsilon B}}{\eta- \epsilon B} {\int_{0}^{1}} e^{\epsilon B t} (1-e^{(\eta-\epsilon B)(t-1) }) {\mathcal{\tilde{L}}}(\eta t) \mathrm{d} t\\&&+ \frac{e^{-\eta}}{\epsilon B -\eta }(1-e^{\eta-\epsilon B}).\\ \end{array} $$

denoting

$$\begin{array}{@{}rcl@{}} F_{2}=E_{2}&=& \epsilon B e^{-\epsilon B} {\int_{0}^{1}} e^{\epsilon tB}{\mathcal{\tilde{L}}}(\eta t) \mathrm{d} t + e^{-\epsilon B}\\ \end{array} $$

we have

$$\begin{array}{@{}rcl@{}} {\mathcal{L}}_{I^{\textrm{mean}}}(\xi)&=& \exp \Big[-\int_{0}^{\infty} \big(1-\frac{\epsilon B}{(1+\epsilon B)} F_{1}\!-\! \frac{1}{(1+\epsilon B)} F_{2} \big) \Lambda(dv) \Big] \end{array} $$

which gives the result presented.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Błaszczyszyn, B., Mühlethaler, P. Interference and SINR coverage in spatial non-slotted Aloha networks. Ann. Telecommun. 70, 345–358 (2015). https://doi.org/10.1007/s12243-014-0455-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-014-0455-2

Keywords

Navigation