Skip to main content
Log in

Compressive slow-varying wideband power spectrum sensing for cognitive radio

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

Wideband spectrum sensing is a critical component of a functioning cognitive radio system. Its major challenge is the too high sampling rate requirement. Compressive sensing (CS) promises to be able to deal with it. Nearly all the current CS-based compressive wideband spectrum sensing methods exploit only the frequency sparsity to perform. This paper sets up a new signal model which is sparse in both temporal and frequency domain. Motivated by the achievement of a fast and robust detection of the wideband spectrum change, total variation minimization is incorporated to exploit the temporal and frequency structure information to enhance the sparsity level. As a sparser vector is obtained, the spectrum sensing period would be shortened and sensing accuracy would be enhanced. Both theoretical analysis and numerical experiments demonstrate the performance improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sahai A, Cabric D (2005) Spectrum sensing—fundamental limits and practical challenges. In: A tutorial presented at IEEE DySpan Conference 2005, Baltimore

  2. Saeedzarandi M, Paeiz A (2013) Cooperative multiband joint detection in cognitive radio networks using artificial immune system. Ann Telecommun–Annales des Telecommunications 68(3–4):239–246

    Article  Google Scholar 

  3. Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23(2):201–220

    Article  Google Scholar 

  4. Moy C, Doyle L, Sanada Y (2009) Foreword-cognitive radio: from equipment to networks. Ann Telecommun–Annales des Tlcommunications 64(7):415–417

    Article  Google Scholar 

  5. Mitola J III (2009) Cognitive radio architecture evolution: annals of telecommunications. Ann Telecommun–Annales des Tlcommunications 64(7):419–441

    Article  Google Scholar 

  6. Hamdoun H, Loskot P, O’Farrell T, He J (2012) Survey and applications of standardized energy metrics to mobile networks. Ann Telecommun–Annales des Tlcommunications 67(3–4):113–123

    Article  Google Scholar 

  7. Ghasemi A, Sousa ES (2008) Spectrum sensing in cognitive radio networks: requirements, challenges and design trade-offs. IEEE Commun Mag 46(4):32–39

    Article  Google Scholar 

  8. Li C, Chen W, Wang B, Zhang X, Chen H, Yang D (2011) System-level simulation methodology and platform for mobile cellular systems. IEEE Commun Mag 49(7):148–155

    Article  Google Scholar 

  9. Wang G, Chen H (2011) An importance sampling method for TDOA-based source localization. IEEE Trans Wirel Commun 10(5):1560–1568

    Article  Google Scholar 

  10. Donoho D (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  11. Candes EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    Article  MathSciNet  MATH  Google Scholar 

  12. Candes EJ, Wakin MB (2008) An introduction to compressive sampling. IEEE Signal Proc Mag 25(2):21–30

    Article  Google Scholar 

  13. FCC (2002) Spectrum policy task force report. ET docket no. 02-155. FCC, Washington

  14. Tian Z, Giannakis GB (2007) Compressed sensing for wideband cognitive radios. In: International conference on acoustics, speech, and signal processing 2007, vol 4, 15–20, April, pp IV-1357–IV-1360

  15. Tian Z (2008) Compressed wideband sensing in cooperative cognitive radio networks. In: Proceedings of IEEE Globecom conference, New Orleans, Dec., pp 1–5

  16. Tian Z, Blasch E, Li W, Chen G, Li X (2008) Performance evaluation of distributed compressed wideband sensing for cognitive radio networks. In: Proceedings of the ISIF/IEEE International Conference on Information Fusion (FUSION), Cologne, July, pp 1–8

  17. Elsner JP, Braun M, Jakel H, Jondral FK (2009) Compressed spectrum estimation for cognitive radios. In: Proceedings of 19th Virginia Tech symposium on wireless communications, Blacksburg, Jun., pp 1–4

  18. Wang Y, Pandharipande A, Polo YL, Leus G (2009) Distributed compressive wide-band spectrum sensing. In: IEEE proceedings of information theory application (ITA’ 09), San Diego, Feb, pp 1–4

  19. Polo YL, Wang Y, Pandharipande A, Leus G (2009) Compressive wideband spectrum sensing. In: International conference on acoustics, speech, and signal processing (ICASSP 2009), vol 00, pp 2337–2340

  20. Liu Y, Wan Q (2011) Anti-sampling-distortion compressive wideband spectrum sensing for cognitive radio. Int J Mob Commun 9(6):604–618

    Article  Google Scholar 

  21. Liu Y, De Vos M, Van Huffel S (2012) Robust sparse signal recovery for compressed sensing with sampling and representation uncertainties. Internal Report 12-177, ESAT-STADIUS, KU, Leuven, Nov

  22. Liu Y, Wan Q (2012) Compressive wideband spectrum sensing for fixed frequency spectrum allocation. arXiv preprint arXiv:1005.1804

  23. Liu Y, Wan Q (2012) Enhanced compressive wideband frequency spectrum sensing for dynamic spectrum access. EURASIP J Adv Signal Process 2012(177):1–17

    Google Scholar 

  24. Romberg J (2008) Imaging via compressive sampling introduction to compressive sampling and recovery via convex programming. IEEE Signal Proc Mag 25(2):14–20

    Article  Google Scholar 

  25. Liu Y, Wan Q (2010) Robust beamformer based on total variation minimization and sparse constraint. Electron Lett 46(25):1697–1699

    Article  Google Scholar 

  26. Laska JN, Kirolos S, Massoud Y, Baraniuk R, Gilbert A, Iwen M, Strauss M (2006) Random sampling for analog-to-information conversion of wideband signals. In: IEEE Dallas circuits and systems workshop (DCAS), pp 119–122

  27. Laska JN, Kirolos S, Duarte MF, Ragheb TS, Baraniuk RG, Messoud Y (2007) Theory and implementation of an analog-to-information converter using random demodulation. In: IEEE international symposium on circuits and systems (ISCAS), pp 1959–1962

  28. Yu Z, Hoyos S, Sadler BM (2008) Mixed-signal parallel compressed sensing and reception for cognitive radio. In: IEEE international conference on acoustics, speech, and signal processing 2008 (ICASSP 2008), March 30–April 4, Las Vegas, pp 3861–3864

  29. Mishali M, Eldar YC (2009) Xampling. Part I: practice. CCIT report no. 747, EE Dept., Technion-Israel Institute of Technology, arXiv:0911.0519

  30. Mallat S, Zhang Z (1993) Matching pursuit in a time-frequency dictionary. IEEE Trans Signal Process 41(12):3397–3415

    Article  MATH  Google Scholar 

  31. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  32. Chen SS (1995) Basis pursuit. Department of Statistics, Ph. D dissertation, Stanford University

  33. Chen SS, Donoho DL, Saunders MA (1999) Atomic decomposition by basis pursuit. SIAM J Sci Comput 20(1):33–61

    Article  MathSciNet  MATH  Google Scholar 

  34. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc B 58:267–288

    MathSciNet  MATH  Google Scholar 

  35. Efron B, Johnstone I, Hastie T, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–499

    Article  MathSciNet  MATH  Google Scholar 

  36. Kim S-J, Koh K, Lustig M, Boyd S, Gorinevsky D (2007) An interior-point method for large-scale l1-regularized least squares. IEEE J Sel Top Signal Process 1(4):606–617

    Article  Google Scholar 

  37. Kim S-J, Koh K, Lustig M, Boyd S, Gorinevsky D (2007) An interior-point method for large-scale l1-regularized least squares. In: Proceedings international conference on image processing (ICIP), vol 3, pp III-117–III-120, September

  38. Candes E, Tao T (2007) The Dantzig selector: statistical estimation when p is much larger than n. Ann Stat 35(6):2313–2351

    Article  MathSciNet  MATH  Google Scholar 

  39. Grant M, Boyd S, Ye Y (2008) CVX: Matlab software for disciplined convex programming. http://www.stanford.edu/boyd/index.html

  40. Sturm J (1999) Using sedumi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw 11(12):625–653

    Article  MathSciNet  Google Scholar 

  41. Wen F, Wan Q, He G, Zhang P, Liu Y (2013) Wideband direction of arrival estimation with linear array: analysis and closed-form formulae. Chin J Electron 22(4):779–783

    Google Scholar 

  42. Wang C, Chen H, Yin Q, Feng A, Molisch AF (2011) Multi-user two-way relay networks with distributed beamforming. IEEE Trans Wirel Commun 10(10):3460–3471

    Article  Google Scholar 

  43. Liang J, Zeng X, Wang W, Chen H (2011) L-shaped array-based elevation and azimuth direction finding in the presence of mutual coupling. Signal Process 91(5):1319–1328

    Article  MATH  Google Scholar 

  44. Avonds Y, Liu Y, Van Huffel S (2013) Simultaneous greedy analysis pursuit for compressive sensing of multi-channel ECG signals. Internal Report 13–82. ESAT-STADIUS, KU, Leuven

  45. Huang X, Liu Y, Shi L, Van Huffel S, Suykens J (2013) Two-level L1 optimization for compressed sensing. Internal report 13–123. ESAT-STADIUS, KU, Leuven

  46. Liu Y, De Vos M, Gligorijevic I, Matic V, Li Y, Van Huffel S (2013) Multi-structural signal recovery for biomedical compressive sensing. IEEE Trans Biomed Eng 60(10):2794–2805

    Article  Google Scholar 

Download references

Acknowledgments

Yipeng Liu was supported by FWO PhD/postdoc grant G.0108.11 (compressed sensing). Qun Wan was supported in part by the National Natural Science Foundation of China under the grant 61172140, and 985 key projects for excellent teaching team supporting (postgraduate) under the grant A1098522-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yipeng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Wan, Q. Compressive slow-varying wideband power spectrum sensing for cognitive radio. Ann. Telecommun. 69, 559–567 (2014). https://doi.org/10.1007/s12243-013-0414-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-013-0414-3

Keywords

Navigation