Skip to main content
Log in

Combination of fast Fourier transform and self-adaptive differential evolution algorithm for synthesis of phase-only reconfigurable rectangular array antenna

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

Reconfigurable antenna arrays are often capable of radiating multiple patterns by altering the excitation phases of the array elements. In this paper, an efficient method based on FFT is presented for generating dual-radiation pattern from a single rectangular planar array by modifying the excitation phases of the array elements while sharing common amplitudes. The common amplitudes shared by both the patterns and the phases which play the role of turning between the two patterns when updated over zero phase among the elements are computed using Self-adaptive Differential Evolution (SaDE) algorithm. Two different beam-pairs of pencil/pencil and pencil/flat-top are generated from the proposed array while maintaining precise design specifications. The proposed method greatly reduces the computational time as compared with the conventional method for calculating beam patterns. The dynamic range ratio of the excitation amplitudes are kept below a threshold level to reduce the design complexity of the attenuators at the feed network level and to minimize the effect of mutual coupling among the array elements. To illustrate the effectiveness of SaDE, the fitness functions associated with the two beam-pairs are minimized individually using differential evolution (DE) algorithm and particle swarm optimization (PSO) algorithm. Results clearly show the superiority of SaDE over DE and PSO to handle the proposed problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bucci OM, Mazzarella G, Panariello G (1991) Reconfigurable arrays by phase-only control. IEEE Trans Antennas Propag 39(7):919–925

    Article  Google Scholar 

  2. Diaz X, Rodriguez JA, Ares F, Moreno E (2000) Design of phase-differentiated multiple-pattern antenna arrays. Microw Opt Technol Lett 26:52–53

    Article  Google Scholar 

  3. Durr M, Trastoy A, Ares F (2000) Multiple-pattern linear antenna arrays with single prefixed amplitude distributions: modified Woodward–Lawson synthesis. Electron Lett 36(16):1345–1346

    Article  Google Scholar 

  4. Trastoy A, Rahmat-Samii Y, Ares F, Moreno E (2004) Two-pattern linear array antenna: synthesis and analysis of tolerance. IEE Proc Microw Antennas Propag 151(2):127–130

    Article  Google Scholar 

  5. Bregains J, Trastoy A, Ares F, Moreno E (2002) Synthesis of multiple-pattern planar antenna arrays with single prefixed or jointly optimised amplitude distributions. Microw Opt Technol Lett 32(1):74–78

    Article  Google Scholar 

  6. Gies D, Rahmat-samii Y (2003) Particle swarm optimization for reconfigurable phase-differentiated array design. Microw Opt Technol Lett 38:168–175

    Article  Google Scholar 

  7. Mahanti GK, Chakraborty A, Das S (2006) Design of phase-differentiated reconfigurable array antennas with minimum dynamic range ratio. IEEE Antennas Wirel Propag Lett 5:262–264

    Article  Google Scholar 

  8. Mahanti GK, Chakraborty A, Das S (2007) Design of fully digital controlled reconfigurable array antennas with fixed dynamic range ratio. J Electromagn Waves Appl MIT USA 21(1):97–106

    Article  Google Scholar 

  9. Vaitheeswaran SM (2008) Dual beam synthesis using element position perturbations and the G3-GA algorithm. Prog Electromagn Res 87:43–61

    Article  Google Scholar 

  10. Chatterjee A, Mahanti GK, Mahapatra PRS (2011) Design of fully digital controlled reconfigurable dual-beam concentric ring array antenna using gravitational search algorithm. Progress Electromagn Res C 18:59–72

    Google Scholar 

  11. A Chatterjee, GK Mahanti, PRS Mahapatra (2011) “Design of phase-differentiated dual-beam concentric ring array antenna using differential evolution algorithm,” Proc. Int. Conf. on Communications and Signal Processing (ICCSP), 2011, pp. 280–283

  12. A Chatterjee, GK Mahanti, PRS Mahapatra (2011) “Generation of phase-only pencil-beam-pair from concentric ring array antenna using gravitational search algorithm,” Proc. Int. Conf. on Communications and Signal Processing (ICCSP), pp. 384–388

  13. Li X, Yin M (2011) Design of a reconfigurable antenna array with discrete phase shifters using differential evolution algorithm. Progress Electromagn Res B 31:29–43

    MathSciNet  MATH  Google Scholar 

  14. Chatterjee A, Mahanti GK, Chatterjee A (2012) Design of a fully digital controlled reconfigurable switched beam concentric ring array antenna using firefly and particle swarm optimization algorithm. Progress Electromagn Res B 36:113–131

    Article  Google Scholar 

  15. R. S. Elliott (2003) Antenna theory and design, revised edition, John Wiley & Sons, Inc, New York, NY

  16. Mailloux RJ (2005) Phased array antenna handbook, 2nd ed. Artech House, Boston

    Google Scholar 

  17. Randy L. Haupt (2010) Antenna arrays: a computational approach, Wiley IEEE Press, New York, NY

  18. Chen Y, Yang S, Nie Z (2008) Synthesis of satellite footprint patterns from time-modulated planar arrays with very low dynamic range ratios. Int J Numer Model 21:493–506

    Article  MATH  Google Scholar 

  19. Kopilovich LE (2008) Square array antennas based on Hadamard difference sets. IEEE Trans Antennas Propag 56(1):263–266

    Article  Google Scholar 

  20. Donelli M, Martini A, Massa A (2009) A hybrid approach based on PSO and Hadamard difference sets for the synthesis of square thinned arrays. IEEE Trans Antennas Propag 57(8):2491–2495

    Article  Google Scholar 

  21. Zhou H-J, Sun B-H, Li J-F, Liu Q-Z (2009) Efficient optimization and realization of a shaped-beam planar array for very large array application. Prog Electromagn Res 89:1–10

    Article  Google Scholar 

  22. Lanza Diego M, Perez Lopez JR, Basterrechea J (2009) Synthesis of planar arrays using a modified particle swarm optimization algorithm by introducing a selection operator and elitism. Prog Electromagn Res 93:145–160

    Article  Google Scholar 

  23. Zhang L, Jiao Y-C, Weng Z-B, Zhang F-S (2010) Design of planar thinned arrays using a Boolean differential evolution algorithm. IET Microw Antennas Propag 4:2172–2178

    Article  Google Scholar 

  24. Siew Eng N, Wee S, Zhu Liang Y, Huawei C (2010) Beam pattern synthesis for linear and planar arrays with antenna selection by convex optimization. IEEE Trans Antennas Propag 58(12):3923–3930

    Article  Google Scholar 

  25. Petko JS, Werner DH (2011) Pareto optimization of thinned planar arrays with elliptical mainbeams and low sidelobe levels. IEEE Trans Antennas Propag 59(4):1748–1751

    Article  Google Scholar 

  26. Oliveri G, Caramanica F, Fontanari C, Massa A (2011) Rectangular thinned arrays based on McFarland difference sets. IEEE Trans Antennas Propag 59(5):1546–1552

    Article  Google Scholar 

  27. Keizer W (2009) Large planar array thinning using iterative FFT techniques. IEEE Trans Antennas Propag 57(10):3359–3362

    Article  Google Scholar 

  28. Azevedo JAR (2011) Synthesis of planar arrays with elements in concentric rings. IEEE Trans Antennas Propag 59(3):839–845

    Article  Google Scholar 

  29. Storn R, Price KV (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  30. Price K, Storn R, Lampinen J (2005) Differential evolution—a practical approach to global optimization. Springer-Verlag, Berlin, Germany

    MATH  Google Scholar 

  31. Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. Proc. IEEE Congr. Evolut. Comput, Edinburgh, Scotland, Sep, pp 1785–1791

    Google Scholar 

  32. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. Evol Comput IEEE Trans On 13(2):398–417

    Article  Google Scholar 

  33. Das S, Abraham A, Chakraborty UK, Konar A (2009) Differential evolution using a neighborhood-based mutation operator. IEEE Trans Evol Comput 13(3):526–553

    Article  Google Scholar 

  34. Jing-Li G, Jian-Ying L (2009) Pattern synthesis of conformal array antenna in the presence of platform using differential evolution algorithm. IEEE Trans Antennas Propag 57(9):2615–2621

    Article  Google Scholar 

  35. Goudos SK, Siakavara K, Samaras T, Vafiadis EE, Sahalos JN (2011) "Sparse linear array synthesis with multiple constraints using differential evolution with strategy adaptation. Antennas Wirel Propag Lett IEEE 10, No.:670–673

    Article  Google Scholar 

  36. Gong W, Cai Z, Ling CX, Li H (2011) Enhanced differential evolution with adaptive strategies for numerical optimization. IEEE Trans Syst Man Cybern Part B Cybern 41(2):397–413

    Article  Google Scholar 

  37. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Networks 4:1942–1948

    Google Scholar 

  38. Clerc M, Kennedy J (2002) The particle swarm—explosion, stability and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73

    Article  Google Scholar 

  39. Chatterjee A, Mahanti GK, Pathak NN (2010) Comparative performance of gravitational search algorithm and modified particle swarm optimization algorithm for synthesis of thinned scanned concentric ring array antenna. Prog Electromagn Res B 25:331–348

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. P. N. Suganthan for providing the source code of the SaDE algorithm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Mahanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, A., Mahanti, G.K. Combination of fast Fourier transform and self-adaptive differential evolution algorithm for synthesis of phase-only reconfigurable rectangular array antenna. Ann. Telecommun. 69, 515–527 (2014). https://doi.org/10.1007/s12243-013-0396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-013-0396-1

Keywords

Navigation