Skip to main content
Log in

Electrical stochastic modeling of cell for bio-electromagnetic compatibility applications

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

These works were dedicated to the electrical modeling of biological cell subjected to pulsed electromagnetic fields. From the variability of living parameters encountered, an accurate modeling of the electrical and stochastic parameters is necessary. In this paper, we propose simple stochastic approaches based upon a Monte Carlo-like “philosophy” to integrate uncertainties. The use of robust stochastic methods in the field of bio-electromagnetic compatibility allows an improvement of both the efficiency and precision of the technique. The potential aimed applications relying in the study on the sensitivity of biological and electrical parameters in the start of the electroporation phenomenon. We will present the electrical model and the theoretical foundations of these techniques—they will be illustrated on numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Burais N, Buret F, Faure N, Frenea-Robin M, Nicolas L, Ogbi A, Perrussel R, Scoretti R, Voyer D (2008) Modélisation de l’interaction entre champ électrique et cellules biologiques. In: Proc. NUMELEC2008. Liège, Belgique

  2. El Habachi A (2011) Propagation de la variabilité de la morphologie humaine sur le Débit d’Absorption Spécifique en dosimétrie numérique. PhD Thesis Supélec, Paris, France

  3. Silve A, Leray I, Mir L (2011) Demonstration of cell membrane permeabilization to medium-sized molecules caused by a single 10 ns electric pulse. Bioelectrochemistry, doi:10.1016/j.bioelechem.2011.10.002

  4. Sundararajan R (2009) Nanosecond electroporation: another look. Mol Biotechnol 41(1):69–82

    Article  MathSciNet  Google Scholar 

  5. Shoenbach KH, Katsuki S, Stark RH, Buescher ES, Beebe SJ (2002) Bioelectrics-new applications for pulsed power technology. IEEE Trans Plasma Sci 30(1):293–300

    Article  Google Scholar 

  6. Ellapan P, Sundararajan R (2005) A simulation study of the electrical model of a biological cell. J Electrost 63:297–307

    Article  Google Scholar 

  7. Shrive L, Grasmick A, Moussière S, Sarrade S (2006) Pulsed electric field treatment of Saccharomyces cerevisiae suspensions: a mechanistic approach coupling energy transfer, mass transfer and hydrodynamics. Biochem Eng J 27(3):212–224

    Article  Google Scholar 

  8. Press WH, Teukolsky SA (1992) Numerical recipes, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  9. Mishra N, Gupta N (2009) Quasi Monte Carlo integration technique for method of moments solution of EFIE in radiation problems. ACES J 24(3):306–311

    Google Scholar 

  10. de Menezes L, Thomas D, Christopoulos C (2009) Accounting for uncertainty in EMC studies. In: Proc. Int. Symp. on EMC. Kyoto, Japan

  11. de Menezes L, Thomas D, Christopoulos C, Ajayi A, Sewell P (2008) The use of unscented transforms for statistical analysis in EM. In: Proc. EMC Europe 2008. Hamburg, Germany

  12. de Menezes L, Ajayi A, Christopoulos C, Sewell P, Borges GA (2008) Efficient computation of stochastic electromagnetic problems using unscented transforms. IET Sci Meas Technol 2(2):88–95

    Article  Google Scholar 

  13. Chauvière C, Hestaven JS, Wilcox LC (2007) Efficient computation of RCS from scatterers of uncertain shapes. IEEE Trans Antennas Propag 55(5):1437–1448

    Article  Google Scholar 

  14. Bonnet P, Diouf F, Chauvière C, Lalléchère S, Fogli M, Paladian F (2009) Numerical simulation of a reverberation chamber with a stochastic collocation method. CR Acad Sci, Phys 10:54–64

    Article  Google Scholar 

  15. Bonnet P, Chauvière C, Lalléchère S, Paladian F, Pecqueux B (2010) Recherche de configurations critiques pour un problème de C.E.M. stochastique. In: Proc. 15th Int. Symp. on EMC. Limoges, France

  16. Paladian F, Bonnet P, Lalléchère S (2011) Modeling complex systems for EMC applications by considering uncertainties. Proc. XXXth URSI GA 2011. Istanbul, Turkey

  17. Diouf F, Canavero F (2009) Crosstalk statistics via collocation method. In: Proc. IEEE Int. Symp. on Electromagnetic Compatibility. Austin, TX, USA

  18. Rannou V, Brouaye F, Hélier M, Tabbara W (2002) Kriging the quantile: application to a simple transmission line model. Inst. of Ph. Publish., Inverse Problems 18, pp 37–48

  19. Jouvie F, Lecointre D, Briend P, Jacquin F, Nicolas E (2011) Computation of the field radiated by a FM transmitter by means of ordinary kriging. Ann Telecommun 66:429–443

    Article  Google Scholar 

  20. Voyer D, Nicolas L, Perrussel R (2009) Comparison of methods for modeling uncertainties in a 2D hyperthermia problem. PIER B 11:189–204

    Article  Google Scholar 

  21. Bagci H, Yucel AC, Hesthaven JS (2009) A fast stroud-based collocation method for statistically characterizing EMI/EMC phenomena on complex platforms. IEEE Trans EMC 51(2):301–311

    Google Scholar 

  22. Sumant PS, Wu H, Cangellaris AC, Aluru NR (2010) A sparse grid based collocation method for model order reduction of finite element approximations of passive electromagnetic devices under uncertainty. In: Proc. 2010 IEEE MTT-S International. Anaheim, CA, USA, pp 1652–1655

  23. Tarhini I, Guiffaut C, Reineix A, Karam S, Pecqueux B, Joly JC (2008) Etude paramétrique de la susceptibilité des cartes électroniques par les plans d’expériences numériques. In: Proc. Int. Symp. On EMC. Paris, France

  24. Matriche Y, Feliachi M, Zaoui A, Abdellah M (2012) Modèle de réponse du RADAR pénétration de sol basé sur la méthode de plan d’expérience en vue de la localisation et la caractérisation des objets explosifs enfouis. In: Proc. NUMELEC 2012. Marseille, France

  25. Aiouaz O, Lautru D, Wong MF, Wiart J, Fouad-Hanna V (2010) Méthode de collocation stochastique multidimensionnelle par calcul FDTD pour evaluer la variabilite du DAS. In: Proc. CEM2010. Limoges

  26. Aiouaz O, Lautru D, Wong MF, Conil E, Gati A, Wiart J, Fouad-Hanna V (2011) Uncertainty analysis of the specific absorption rate induced in a phantom using a stochastic spectral collocation method. Ann Telecommun 66:409–418

    Article  Google Scholar 

  27. Drissaoui A, Musy F, Perrussel R, Voyer D (2011) Prise en compte de l’incertitude. Applications à la dosimétrie électromagnétique numérique, AG Interférences d’Ondes, CNAM Paris

  28. Lalléchère S, Bonnet P, Paladian F (2012) Modèle stochastique de cellule électrique pour des applications en bio-compatibilité électromagnétique. In: Proc. Numelec2012. Marseille, France

  29. Schwan HP (1963) Electric characteristics of tissues: a survey. Biophysics 1:198

    Google Scholar 

  30. Foster KR, Schwan HP (1996). In: Polk C, Postow E (eds) Handbook of biological effects of electromagnetic fields. CRC, Boca Raton, pp 89-1–89-3

    Google Scholar 

  31. Zheng S, Mac DH, Coorevits T, Clénet S, Mipo JC (2012) Modélisation des incertitudes géométriques d’un stator en vue d’une quantification des performances d’une machine électrique. In: Proc. NUMELEC, 2012. Marseille, France

  32. Stroud AH (1957) Remarks on the disposition of points in numerical integration formulas. Math Tables Other Aids Comput 11(3):1118–1139

    MathSciNet  Google Scholar 

  33. Xiu D, Hesthaven JS (2005) High order collocation methods for differential equations with random inputs. SIAM J Sci Comput 27(3):1118–1139

    Article  MATH  MathSciNet  Google Scholar 

  34. Lalléchère S, Bonnet P, El Baba I, Paladian F (2011) Unscented transform and stochastic collocation methods for stochastic electromagnetic compatibility. In: Proc. CEM11. Izmir, Turkey

  35. Iooss B (2011) Revue sur l’analyse de sensibilité globale de modèles numériques. J Soc Française Stat 152(1):3–25

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Lalléchère.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalléchère, S., Bonnet, P. & Paladian, F. Electrical stochastic modeling of cell for bio-electromagnetic compatibility applications. Ann. Telecommun. 69, 295–308 (2014). https://doi.org/10.1007/s12243-013-0364-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-013-0364-9

Keywords

Navigation