Design rules for chipless RFID tags based on multiple scatterers

Abstract

In this paper, we present some design rules to create a chipless RFID tag that encodes the information in the frequency domain. Some criterions are introduced to make the best choice concerning the elementary scatterers that act like signal processing antennas. The performance of several scatterers will be compared before a study on the radiating properties of a versatile C-like scatterer. An electrical model as well as a transfer function model is presented to best understand the frequency response of both a single-layer and a grounded scatterer. An example of the design and the optimization of a chipless RFID tag based on the use of multiple scatterers are provided, and the frequency optimization step for each resonant peak will be discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Finkenzeller K (2010) RFID handbook: fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication. Wiley, Chichester

    Book  Google Scholar 

  2. 2.

    Hartmann C (2002) A global SAW ID tag with large data capacity. Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE, p. 65–69

  3. 3.

    Mandel C, Schussler M, Maasch M, Jakoby R (2009) A novel passive phase modulator based on LH delay lines for chipless microwave RFID applications. Wireless Sensing, Local Positioning, and RFID, 2009. IMWS 2009. IEEE MTT-S International Microwave Workshop on, p. 1–4

  4. 4.

    Chamarti A, Varahramyan K (2006) Transmission delay line based id generation circuit for RFID applications. IEEE Microw Wirel Compon Lett, 16:588–590

    Article  Google Scholar 

  5. 5.

    Shrestha S, Balachandran M, Agarwal M, Phoha V, Varahramyan K (2009) A chipless RFID sensor system for cyber centric monitoring applications. IEEE Trans Microw Theory Tech 57:1303–1309

    Article  Google Scholar 

  6. 6.

    Vemagiri J, Chamarti A, Agarwal M, Varahramyan K (2007) Transmission line delay-based radio frequency identification (RFID) tag. Microw Opt Tech Lett 49:1900–1904

    Article  Google Scholar 

  7. 7.

    Zheng L, Rodriguez S, Zhang L, Shao B, Zheng L (2008) Design and implementation of a fully reconfigurable chipless RFID tag using inkjet printing technology. Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on, p. 1524–1527

  8. 8.

    Zhang L, Rodriguez S, Tenhunen H, Zheng L (2006) An innovative fully printable RFID technology based on high speed time-domain reflections. High Density Microsystem Design and Packaging and Component Failure Analysis, 2006. HDP'06. Conference on, p. 166–170

  9. 9.

    Schuler M, Mandel C, Maasch M, Giere A, Jakoby R (2009) Phase modulation scheme for chipless RFID-and wireless sensor tags. Microwave Conference, APMC. Asia Pacific, p. 229–232

  10. 10.

    Nair R, Perret E, Tedjini S (2012) Temporal multi-frequency encoding technique for chipless RFID applications. Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International, p. 1–3

  11. 11.

    Preradovic S, Karmakar N (2009) Design of fully printable planar chipless RFID transponder with 35-bit data capacity. Microwave Conference, 2009. EuMC 2009. European, p. 13–16

  12. 12.

    Preradovic S, Roy S, Karmakar N (2009) Fully printable multi-bit chipless RFID transponder on flexible laminate. Microwave Conference, 2009. APMC 2009. Asia Pacific, p. 2371–2374

  13. 13.

    Jalaly I, Robertson I (2005) RF barcodes using multiple frequency bands. Microwave Symposium Digest, 2005 IEEE MTT-S International, p. 4 pp

  14. 14.

    Jalaly I, Robertson I (2005) Capacitively-tuned split microstrip resonators for RFID barcodes. Microwave Conference, 2005 European, p. 1–4

  15. 15.

    Mcvay J, Hoorfar A, Engheta N (2006) Theory and experiments on Peano and Hilbert curve RFID tags. Proceedings of SPIE, p. 624808

  16. 16.

    Vena A, Perret E, Tedjini S (2011) Novel compact RFID chipless tag. Proc. Progress Electromag. Res. Symp, p. 20–23

  17. 17.

    Vena A, Perret E, Tedjini S (2011) Chipless RFID tag using hybrid coding technique. IEEE Trans Microw Theory Tech 59(12):3356–3364

    Article  Google Scholar 

  18. 18.

    Vena A, Perret E, Tedjini S (2011) RFID chipless tag based on multiple phase shifters. Microwave Symposium Digest (MTT), 2011 IEEE MTT-S International, p. 1–4

  19. 19.

    Vena A, Perret E, Tedjini S (2012) A fully printable chipless RFID tag with detuning correction technique. IEEE Microw Wirel Compon Lett 22:209–211

    Article  Google Scholar 

  20. 20.

    Vena A, Perret E, Tedjini S (2012) High-capacity chipless RFID tag insensitive to the polarization. IEEE Trans Antenn Propag 60(10):4509–4515

    Google Scholar 

  21. 21.

    Vena A, Perret E, Tedjini S (2012) Design of compact and auto-compensated single-layer chipless RFID tag. IEEE Trans Microw Theory Tech 60(9):2913–2924

    Google Scholar 

  22. 22.

    Aubert H, Pons P, Chebila F (2010) Measurement device comprising an electromagnetic diffuser. WO Patent WO/2010/136,388

  23. 23.

    Jang H, Lim W, Oh K, Moon S, Yu J (2010) Design of low-cost chipless system using printable chipless tag with electromagnetic code. IEEE Microw Wirel Compon Lett 20:640–642

    Article  Google Scholar 

  24. 24.

    Mukherjee S, Chakraborty G (2009) Chipless RFID using stacked multilayer patches. Applied Electromagnetics Conference (AEMC), 2009, p. 1–4

  25. 25.

    Tedjini S, Perret E, Vena A, Kaddour D (2012) Mastering the electromagnetic signature of chipless RFID tags. Chipless and conventional radio frequency identification: systems for ubiquitous tagging. IGI Global. p. 146–174

  26. 26.

    Karmakar N (2010) Handbook of smart antennas for RFID systems. Wiley, Hoboken

    Book  Google Scholar 

  27. 27.

    Balanis C (2005) Antenna theory: analysis and design. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Grenoble-Inp for their support via the BQR initiative. The authors also acknowledge the French National Research Agency for financially supporting this project via the ANR-09-VERS-013 program references.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arnaud Vena.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vena, A., Perret, E. & Tedjini, S. Design rules for chipless RFID tags based on multiple scatterers. Ann. Telecommun. 68, 361–374 (2013). https://doi.org/10.1007/s12243-013-0358-7

Download citation

Keywords

  • RFID
  • Chipless RFID
  • Design rules
  • Signal processing antennas
  • Scatterers