Skip to main content
Log in

Optimisation of a device for pick-up of low-frequency radio signals and transmission over polymer optical fibres

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

The development of passive (without RF amplifier) and optimised VHF-detector/optical-modulator circuit module as a device for operation in the 88–108 MHz band will be described in this paper. It uses illumination-type light-emitting diodes (LEDs) emitting at 650 nm as the light source, coupled with poly(methyl methacrylate) polymer optical fibre. Reactive impedance matching is performed between the optoelectronic light source and the antenna by taking into account the some capacitance variation with the frequency of the antenna and of the biased LED, not resolved with the packaging parasitic effects. The relatively simple device presented here and named wireless-over-polymer optical fibre may be useful in many low-frequency radio-over-fibre applications and may contribute to energy savings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Williamson RC, Esman RD (2008) RF Photonics. J Light Technol 26(9):1145–1151

    Article  Google Scholar 

  2. Stewart A (2008) Reviewing the 400 MHz band. Government Planning Section, Australian Communications and Media Authority (2 May 2008)

  3. Stillwell A (2008) FCC adopts rules for unlicensed use of television white spaces. News, Federal Communications Commission (4 November 2008)

  4. Ribeiro RM, Xavier OS, Souza JAM, Barbero APL (2009) An optoelectronic probe with loss compensation for electromagnetic monitoring at low frequencies. Meas Sci Technol 20(11):115111.1–115111.9

    Article  Google Scholar 

  5. Quilez M, Silva F, Riu P (1998) Low cost optical link to monitor EUT’s susceptibility tests. In: 14th International Symposium of Electromagnetic Compatibility, Wroclaw, Pologne, pp. 229–232

  6. Urick VJ, Hastings A, Dexter JL, Williams KJ, Sunderman C, Diehl J, Colladay K (2008) Field test on the feasibility of remoting HF antenna with fiber optics. Naval Research Laboratory, NRL/MR/5652—08-9137 (31 July 2008)

  7. Pappert SA, Berry MH, Hart SM, Orazi RJ, Koyama LB, Li ST (1994) Ultrawide shipboard electrooptic electromagnetic environment monitoring. Technical Report 1646, Naval Command Control and Ocean Surveillance Center, San Diego, CA (May 1994)

  8. Pappert SA, Lin SC, Orazi RJ, Mc Landrich MN, Yu PKL, Li ST (1991) Broadband electromagnetic environment monitoring using semiconductor electroabsorption modulators. Proc SPIE 1476:282–293

    Article  Google Scholar 

  9. Jacobs EW, Olsen RB, Rodgers JS, Evans DC, Weiner TE, Lin C (2007) RF-over-fiber and optical processing for navy applications. OSA/OFC, Paper OWU1

  10. Pappert SA, Sun CK, Orazi RJ, Welner TE (2000) Microwave fiber optic links for shipboard antenna applications. In: Proceedings of the IEEE International Conference on Phased Array Systems and Technology, Dana Point, CA, USA, 21–25 May, pp. 345–348

  11. Maricot S, Vilcot JP, Decoster D, Renaud JC, Rondi D, Hirtz P, Blondeau R, de Cremoux B (1993) Reactively matched optoelectronic transceivers on InP substrate for 6 GHz operation. IEEE MTT-S Digest, paper CC-6, pp. 1067–1070

  12. Goldsmith CL, Kanack B (1993) Broad-band reactive matching of high-speed directly modulated laser diodes. IEEE Microw Guid Wave Lett 3(9):336–338

    Article  Google Scholar 

  13. Ghafouri-Shiraz H, Wong WM (2000) Matching network for microwave applications of semiconductor laser diodes (LDS): consideration of the effects of electrical parasitics and LD carrier-dependent impedance. Microw Opt Technol Lett 25(3):197–200

    Article  Google Scholar 

  14. Maricot S, Vilcot JP, Decoster D (1991) Improvement of microwave signal optical transmission by passive matching of optoelectronic devices. Microw Opt Technol Lett 4(13):591–595

    Google Scholar 

  15. Maricot S, Vilcot JP, Decoster D, Renaud JC, Rondi D, Hirtz P, Blondeau R, de Cremoux B (1992) Monolithic integration of optoelectronic devices with reactive matching networks for microwave applications. IEEE Photon Technol Lett 4(11):1248–1250

    Article  Google Scholar 

  16. Andrenko AS, Ikeda Y, Nakayama M, Ishida O (2000) Impedance matching in active integrated antenna receiver front end design. IEEE Microw Guid Wave Lett 10(1):16–18

    Article  Google Scholar 

  17. Cryan MJ, Dragas M, House T, Varrazza R, Hill M, Yu S, Rorison J (2004) A 2.4-GHz Wireless-Over-Fibre Transmitter using a photonic active integrated antennas (PhAIA). OSA/CLEO, paper CWA4

  18. Hirata A, Nagatauma T (2001) 120 GHz millimetre-wave antenna for integrated photonic transmitter. Electron Lett 37(24):1460–1461

    Article  Google Scholar 

  19. Sittakul V, Cryan MJ (2007) A fully bidirectional 2.4-GHz wireless-over-fiber system using photonic active integrated antennas (PhAIAs). J Light Technol 25(11):3358–3365

    Article  Google Scholar 

  20. Sittakul V, Cryan MJ (2009) A 2.4-GHz wireless-over-fibre system using photonic active integrated antennas (PhAIAs) and lossless matching circuits. J Light Technol 27(14):2724–2731

    Article  Google Scholar 

  21. Yashchyshyn Y, Chizh A, Malyshev S, Modelski J (2010) Technologies and Applications of Microwave Photonic Antennas. In: Xth International Conference on Modern Problems of Radio Engineering, Telecommunications, and Computer Science (TCSET’2010),, Lviv-Slavske, Ukraine, 23–27 February, pp. 11–14 (2010)

  22. Assimakopoulos P, Sittakul V, Nkansah A, Gomes N, Cryan M, Wake D (2011) Comparison Between Remote Antenna Units with Detachable Antennas and Photonic Active Integrated Antennas for Indoor Applications. In: XXX URSI General Assembly and Scientific Symposium of International Union of Radio Science (URSIGASS 2011), Istanbul, Turkey, August 13–20, Paper FP1.4

  23. Nanyan NF, Hashim SZM, Ngah R, Rahayu Y, Prakoso T (2010) An active uplink photonic antenna. In: Proceedings of 2010 IEEE Asia-Pacific Conference on Electromagnetic (APACE 2010), Port Dickson, Malaysia, 9–11 November, pp. 1–4

  24. Silva F, Sánchez F, Riu PJ, Pallás-Areny R (1997) Low-cost near-field probe for simultaneous E and H measurement with analog optical link. In: Proceedings of the IEEE 1997 International Symposium on Electromagnetic Compatibility, Austin, TX, USA, 18–22 August, pp. 533–536

  25. Beziuk G, Pralat A (2003) Examination of flood embankments via measurement of mutual impedance of loop antennas operating at high frequency. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS’03), Toulouse, France, 21–25 July, vol. 4, pp. 2508–2510

  26. Park J, Tak Y, Kim Y, Kim Y, Nam S (2011) Investigation of adaptive matching methods for near-field wireless power transfer. EEE Trans Antenn Propag) 59(5):1769–1773

    Article  Google Scholar 

  27. Ahn S, Park S, Noh Y, Park D, Choo H (2010) Design of an on-glass vehicle antenna using a multiloop structure. Microw Opt Technol Lett 52(1):107–110

    Article  Google Scholar 

  28. Li WY, Wong KL (2009) Seven-band surface-mount loop antenna with a capacitively coupled feed for mobile phone application. Microw Opt Technol Lett 51(1):81–88

    Article  Google Scholar 

  29. Miyakawa T, Nishikawa K, Nishida K (2005) An optical- waveguide-type magnetic field probe with loop antenna element. Electron Comm Jpn 88(4):18–26

    Google Scholar 

  30. Ng ML, Leong KS, Cole PH (2006) A small passive UHF RFID tag for metallic item identification. In: Proceedings of the International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSC2006), Chiang Mai, Thailand, pp. 141–144

  31. Pandley J, Liao, Yu-Te, Lingley A, Parviz B, Otis B (2009) Toward an active contact lens: Integration of a wireless power harvesting IC. In: IEEE Biomedical Circuits and Systems Conference (BioCAS 2009), Beijing, China, 26–28 November, pp. 125–128

  32. Ziemann O, Krauser J, Zamzow PE, Daum W (2008) POF handbook: optical short range transmission systems, 2nd edn. Springer, Berlin

  33. Walter G, Wu CH, Then HW, Feng M, Holonyak N Jr (2009) 4.3 GHz optical bandwidth light emitting transistor. Appl Phys Lett 94:241101–241103

    Article  Google Scholar 

  34. Walter G, Wu CH, Then HW, Feng M, Holonyak N Jr (2009) Tilted-charge high speed (7 GHz) light emitting diode. Appl Phys Lett 94:231125–231127

    Article  Google Scholar 

  35. Souza JAM, Mosso MM, Ribeiro RM, Barbero APL, Xavier OS, Júnior SSO (2011) Optoelectronic/RF passive circuits for low-frequency wireless-over-plastic optical fibres (WoPOFs) transmissions—reduction of antennas powering. GROWAN, Brest, France

    Google Scholar 

  36. Roach, S.D. (2006) Circuitry and methods for improving the performance of a light emitting element. US Patent 7,049,759 B2 (23 May 2006)

  37. McLaughlin JC, Kaiser KL (2007) Deglorifying the maximum power transfer theorem and factors in impedance selection. IEEE Trans Educ 50(3):251–255

    Article  Google Scholar 

  38. Wu J, Wu JL, Kuo CC (1988) Linearization of laser-diode nonlinearity for broadband analogue fibre-optic communication. Int J Optoelectron 3(6):523–533

    Google Scholar 

  39. Xia C, Rosenkranz W (2005) Mitigation of laser nonlinearity and channel ISI simultaneously by using nonlinear equalization for 4-ASK signalling in MMF links. Proceeding of SPIE 6021:60211B

    Article  Google Scholar 

  40. Rumyantsev SL, Shur MS, Bilenko Y, Kosterin PV, Salzberg BM (2004) Low frequency noise and long-term stability of noncoherent light sources. J Appl Phys 96(2):966–969

    Article  Google Scholar 

  41. Ma MT, Kanda M, Crawford ML, Larsen EB (1985) A review of electromagnetic compatibility/interference measurement methodologies. Proc IEEE 73(3):388–411

    Article  Google Scholar 

  42. Sánchez FJ, Riu PJ, Quilez M, Silva F (2003) A low-cost analog fiber optic link for EMC applications. In: 15th International Symposium of Electromagnetic Compatibility, Zurich, Swiss, pp. 667–672

  43. American Technical Ceramics (2012). Available from www.atceramics.com

  44. DieMount GmbH (2012). Available from www.diemount.de

  45. Lingenauer M, Saathoff J, Kragl H (2004) LEDs in the spotlight—a highly efficient module integrates plastic optics. Laser + Photonik, pp. 14–27 (September 2004)

  46. Camatel S, Nespola A, Cardenas D, Abrate S, Gaudino R (2007) LED non-linearity characterization and compensation. In: Proceedings of the 16th International Conference on Plastic Optical Fibers, Turin, Italy, 10–12 September, pp. 56–59

  47. Grover FW (2009) Inductance calculations. Dover Books on Engineering, Mineola

    Google Scholar 

  48. Callegaro L (2009) The metrology of electrical impedance at high frequency: a review. Meas Sci Technol 20(2):022002

    Article  Google Scholar 

  49. Newberg IL (1995) Optoelectronic controlled RF matching circuit. US Patent 5(444):564

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Luca Callegaro of Istitute Nazionale di Ricerca Metrologica, Turin, Italy for fruitful discussions and the Brazilian agencies CNPq/MCT, Capes/MEC and Faperj for the financial support of this research. One of the authors (Ricardo M. Ribeiro) would like to thank the granted Post-Doctoral fellowship of Capes/MEC under contract number BEX 9096/11-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo M. Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, R.M., Barbero, A.P.L., Xavier, O.S. et al. Optimisation of a device for pick-up of low-frequency radio signals and transmission over polymer optical fibres. Ann. Telecommun. 68, 81–93 (2013). https://doi.org/10.1007/s12243-012-0345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-012-0345-4

Keywords

Navigation