Minimum-value distribution of random electromagnetic fields for modeling deep fading in wireless communications

Article

Abstract

In this work, we presented a theoretical investigation of the minimum-value distribution inside complex electromagnetic environments. In particular, a statistical model for characterizing the minimum value of the complex-value field or power inside a dynamic mode-tuned or mode-stirred reverberation chamber is presented and discussed. Such an EM environment serves as an emulator of multipath radiowave propagation for indoor/outdoor wireless communication channels. It is found that, for both overmoded and undermoded regimes, the generalized extreme value distribution leads to the reverse Fréchet and Weibull types for complex-value (Cartesian and total) fields and for the total energy (or intensity). These distributions are stable and follow from the convergent behavior of the lower tail for their corresponding parent distribution of the Cartesian field magnitude, namely a χ2. On the other hand, received power exhibits a Pareto-type distribution because of the unbounded left tail of the negative exponential parent distribution.

Keywords

Generalized extreme value Reverberation chamber Fading 

References

  1. 1.
    Arnaut LR (2008) Measurement uncertainty for reverberation chambers—I. statistics. NPL Report, vol TQE, no 002Google Scholar
  2. 2.
    Corona P, Ladbury J, Latmiral G (2002) Reverberation-chamber research-then and now: a review of early work and comparison with current understanding. IEEE Trans Electromagn Compat 44(1):87–94CrossRefGoogle Scholar
  3. 3.
    Kostas JG, Boverie B (1991) Statistical model for a mode-stirred chamber. IEEE Trans Electromagn Compat 33(3):366–370CrossRefGoogle Scholar
  4. 4.
    Hill DA, Ma MT, Ondrejka AR, Riddle BF, Crawford ML, Johnk RT (1994) Aperture excitation of electrically large, lossy cavities. IEEE Trans Electromagn Compat 36(3):169–178CrossRefGoogle Scholar
  5. 5.
    Hill DA (1998) Plane wave integral representation for fields in reverberation chambers. IEEE Trans Electromagn Compat 40(3):209–217CrossRefGoogle Scholar
  6. 6.
    Arnaut LR (2003) Limit distributions for imperfect electromagnetic reverberation. IEEE Trans Electromagn Compat 45(2):357–377CrossRefGoogle Scholar
  7. 7.
    Arnaut LR, West P (2006) Electromagnetic reverberation near a perfectly conducting boundary. IEEE Trans Electromagn Compat 48(2):359–371CrossRefGoogle Scholar
  8. 8.
    Moglie F (2004) Convergence of the reverberation chambers to the equilibrium analyzed with the finite-difference time-domain algorithm. IEEE Trans Electromagn Compat 46(3):469–476CrossRefGoogle Scholar
  9. 9.
    Höijer M (2006) Maximum power to stress onto the critical component in the equipment under test when performing a radiated susceptibility test in the reverberation chamber. IEEE Trans Electromagn Compat 48(2):372–384CrossRefGoogle Scholar
  10. 10.
    Gradoni G, Moglie F, Pastore AP, Mariani Primiani V (2006) Numerical and experimental analysis of the field to enclosure coupling in reverberation chamber and comparison with anechoic chamber. IEEE Trans Electromagn Compat 48(1):203–211CrossRefGoogle Scholar
  11. 11.
    Arnaut LR (2008) Maximum rate of frequency scanning for distortionless signal generation in electromagnetic reverberation chambers. IEEE Trans Electromagn Compat 50(4):787–793CrossRefGoogle Scholar
  12. 12.
    IEC JWG REV SC77B-CISPR/A: 61000-4-21 (2003) Electromagnetic compaibility: testing and measurement techniques–reverberation chamber test methods. IEC 61000-4-21. Geneva, SwitzerlandGoogle Scholar
  13. 13.
    Arnaut LR (2007) Time-domain measurement and analysis of mechanical step transitions in mode-tuned reverberation: Characterization of instantaneous field. IEEE Trans Electromagn Compat 49(4):772–784CrossRefGoogle Scholar
  14. 14.
    Lehman TH, Freyer GJ (1997) Characterization of the maximum test level in a reverberation chamber. In: IEEE international symposium on EMC. Austin, Texas, pp 44–47Google Scholar
  15. 15.
    Wellander N, Lunden O, Backstrom M (2001) The maximum value distribution in a reverberation chamber. In: IEEE international symposium on EMC. Montreal, Canada, pp 751–756Google Scholar
  16. 16.
    Orjubin G (2007) Maximum field inside a reverberation chamber modeled by the generalized extreme value distribution. IEEE Trans Electromagn Compat 49(1):104–113CrossRefGoogle Scholar
  17. 17.
    Gradoni G, Arnaut LR (2010) Generalized extreme value distributions near a cavity boundary inside electromagnetic reverberation chamber. IEEE Trans Electromagn Compat 52(3): 506–515CrossRefGoogle Scholar
  18. 18.
    Rosengren K, Kildal S, Carlsson C, Carlsson J (2001) Characterization of antennas for mobile and wireless terminals in reverberation chambers: Improved accuracy by platform stirring. Microw Opt Technol Lett 30(6):391–397CrossRefGoogle Scholar
  19. 19.
    Holloway CL, Hill DA, Ladbury JM, Wilson PF, Koepke G, Coder J (2006) On the use of reverberation chambers to simulate a rician radio environment for the testing of wireless devices. IEEE Trans Antennas Propag 54(11):3167–3177CrossRefGoogle Scholar
  20. 20.
    Khaleghi A, Bolomey JC, Azoulay A (2006) On the statistics of reverberation chambers and applications for wireless antenna test. In: IEEE international symposium on antennas and propagation. Albuquerque, USA, pp 3561–3564CrossRefGoogle Scholar
  21. 21.
    Fielitz H, Remley KA, Holloway CL, Zhang Q, Wu Q, Matolak DW (2010) Reverberation-chamber test environment for outdoor urban wireless propagation studies. IEEE Antenn Wireless Propag Lett 9:52–56CrossRefGoogle Scholar
  22. 22.
    Genender E, Holloway CL, Remley KA, Ladbury JM, Koepke G, Garbe H (2010) Simulating the multipath channel with a reverberation chamber: application to bit error rate measurements. IEEE Trans Electromagn Compat 52(4):766–777CrossRefGoogle Scholar
  23. 23.
    Proakis JG, Salehi M (1994) Communication systems engineering, 1st edn. Prentice-Hall, Englewood CliffsMATHGoogle Scholar
  24. 24.
    Corona P, Latmiral G, Paolini E, Piccioli L (1976) Use of a reverberating enclosure for measurements of radiated power in the microwave rang. IEEE Trans Electromagn Compat 18(2):54–59CrossRefGoogle Scholar
  25. 25.
    Yaglom A (1973) An introduction to the theory of stationary random functions. Dover, New YorkGoogle Scholar
  26. 26.
    Vanmarcke E (1983) Random fields. MIT Press, CambridgeMATHGoogle Scholar
  27. 27.
    Orjubin G, Richalot E, Mengue S, Picon O (2006) Statistical model of an undermoded reverberation chamber. IEEE Trans Electromagn Compat 48(1):248–251CrossRefGoogle Scholar
  28. 28.
    Lemoine C, Besnier P, Drissi M (2007) Investigation of reverberation chamber measurements through high-power goodness-of-fit tests. IEEE Trans Electromagn Compat 49(4):745–755CrossRefGoogle Scholar
  29. 29.
    David HA, Nagaraja HN (2003) Order satistics, 3rd edn. Wiley, New YorkCrossRefGoogle Scholar
  30. 30.
    Lang B, Liszwska K (1973) The norton county meteroid: a case for statistical study of meteorite fragments. Meteoritics 8(3):277–286Google Scholar
  31. 31.
    Maslov VP (2009) On the new distribution generalizing the gibbs, Bose–Einstein, and pareto distributions. Math Notes 85(5–6):613–622MATHCrossRefGoogle Scholar
  32. 32.
    Sorrentino A, Ferrara G, Migliaccio M (2008) The reverberating chamber as a line-of-sight wireless channel emulator. IEEE Trans Antennas Propag 56(6):1825–1830CrossRefGoogle Scholar
  33. 33.
    Malhotra J, Sharma AK, Kaler RS (2009) On the performance analysis of wireless receiver using generalized-gamma fading model. Ann Telecommun 64:147–153CrossRefGoogle Scholar
  34. 34.
    Arnaut LR (2002) Compound exponential distribution for undermoded reverberation chambers. IEEE Trans Electromagn Compat 44(3):442–457CrossRefGoogle Scholar
  35. 35.
    Cour BRL (2004) Statistical characterization of active sonar reverberation using extreme value theory. IEEE J Oceanic Eng 29(2):310–316CrossRefGoogle Scholar
  36. 36.
    Gradshteyn IS, Ryzhik IM, Jeffrey A, Zwillinger D (2007) Table of integrals, series and products, 7th edn. Academic, New YorkMATHGoogle Scholar
  37. 37.
    Arnaut LR (2001) Effect of local stir and spatial averaging on the measurement and testing in mode-tuned and mode-stirred reverberation chambers. IEEE Trans Electromagn Compat 43(3):305–325CrossRefGoogle Scholar

Copyright information

© Institut Télécom and Springer-Verlag 2011

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Biomedica, Elettronica e TelecomunicazioniUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Time, Quantum & Electromagnetics DivisionNational Physical Laboratory (NPL)TeddingtonUK
  3. 3.Communications and Signal Processing Group Department of Electrical EngineeringImperial College of ScienceLondonUK

Personalised recommendations