Skip to main content
Log in

Comparison of secure spread-spectrum modulations applied to still image watermarking

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

This article shows the results obtained when using secure spread-spectrum watermarking on gray-scale images in the watermark only attack (WOA) framework. Two secure modulations, natural watermarking (NW) and circular watermarking (CW), are compared with classical insecure modulations, spread spectrum (SS) and improved spread spectrum (ISS), from distortion, robustness, and security points of view. Implementations of CW and NW for still images are proposed: they use a wavelet transform and variable strength embedding with bounded distortion. Robustness of these schemes is assured by using JPEG compression and security is quantified by using a source separation technique: independent component analysis (ICA). Finally, tests are conducted on 2,000 natural images. They allow to distinguish between WOA security classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cayre F, Furon T, Fontaine C (2005) Watermarking security: theory and practice. IEEE Trans Sig Proc 53(10):3976–3987

    Article  MathSciNet  Google Scholar 

  2. Kerckhoffs A (1883) La cryptographie militaire. J Sci Mil IX:5–38

    Google Scholar 

  3. Comesaña P, Pérez-Freire L, Pérez-González F (2005) Fundamentals of data hiding security and their application to spread-spectrum analysis. In: 7th information hiding workshop, IH05. Lecture notes in computer science. Springer, Barcelona

    Google Scholar 

  4. Cayre F, Bas P (2008) Kerckhoffs-based embedding security classes for woa data hiding. IEEE Trans Inf For Sec 3(1):1–15

    Article  Google Scholar 

  5. Cox IJ, Killian J, Leighton FT, Shamoon T (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6(12):1673–1687

    Article  Google Scholar 

  6. Malvar HS, Flôrencio D (2003) Improved spread spectrum: a new modulation technique for robust watermarking. IEEE Trans Signal Process 53:898–905

    Article  Google Scholar 

  7. Cox IJ, Doërr G, Furon T (2006) Watermarking is not cryptography. In: Proc. international workshop on digital watermarking (IWDW). http://www.adastral.ucl.ac.uk/~icox/papers/2006/IWDW2006.pdf

  8. Bas P, Cayre F (2006) Natural watermarking: a secure spread spectrum technique for woa. In: Proc. information hiding, Alexandria

  9. Bas P, Cayre F (2006) Achieving subspace or key security for woa using natural or circular watermarking. In: Proc. ACM multimedia security workshop, Geneva

  10. Piva A, Barni M, Bartolini F, Cappellini V (1997) DCT-based watermark recovering without resorting to the uncorrupted original image. In: IEEE signal processing society 1997 international conference on image processing (ICIP’97), Santa Barbara

  11. Furon T, Bas P (2008) Broken arrows. EURASIP J Inf Secur 2008(ID 597040)

  12. Bas P, Furon T (2008) Break our watermarking system, 2nd edn. http://bows2.gipsa-lab.inpg.fr

  13. Hyvärinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New York

    Book  Google Scholar 

  14. Cayre F, Fontaine C, Furon T (2004) Watermarking attack: security of wss techniques. In: Proc. international workshop on digital watermarking (IWDW). Lecture notes on computer science (3304). Springer, New York, pp 171–183

    Google Scholar 

  15. Hyvarinen A (1999) Fast and robust fixed-point algorithm for independent component analysis. IEEE Trans Neur Net 10(3):626–634

    Article  Google Scholar 

  16. Bas P, Doërr G (2007) Practical security analysis of dirty paper trellis watermarking. In: Proc. information hiding, St-Malo

  17. Mathon B, Bas P, Cayre F, Pérez-González F (2008) Distortion optimization of model-based secure embedding schemes for data-hiding. In: Proc. information hiding, Santa-Barbara

Download references

Acknowledgements

Benjamin Mathon, Francois Cayre, and Patrick Bas are partly supported by the European Commission through the National French projects Nebbiano ANR-06-SETIN-009, ANR-05-RIAM-01903 Estivale, and ARA TSAR. Moreover, Benjamin Mathon is partly supported by BCRYPT project, a Belgian Interuniversity Attraction Pole IAP-VI fund program. We also would like to thank the reviewers for their insightful and suggestive comments on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Mathon.

Appendix A: Distortion specifications

Appendix A: Distortion specifications

We want to link the target PSNR for embedding with the theoretical WCR, used in the formulae of the four modulations. We give proofs of Eqs. 23 and 27.

1.1 A.1 Constant strength embedding

The first point is that, thanks to the nice normalization of retroprojection (Eq. 24), distortion stays constant in the wavelet domain and in the projected space:

$$ \|\mathbf{w}_t\|^2=\|\mathbf{w}\|^2=d^2. $$
(31)

With renormalization against space dimensions, one gets:

$$ \sigma^2_{\mathbf{w}_t} = \frac{d^2}{N_t}, $$
(32)
$$ \sigma^2_{\mathbf{w}} = \frac{d^2}{N_v}. $$
(33)

So, we obtain:

$$ \sigma^2_{\mathbf{w}} = \frac{N_t}{N_v}\sigma^2_{\mathbf{w}_t}. $$
(34)

Mean square error in the spatial domain is:

$${\rm MSE} = \frac{N_t}{M\times N}\sigma^2_{\mathbf{w}_t}; $$
(35)

therefore, PSNR equals:

$${\rm PSNR}=10\log_{10}\left(\frac{255^2}{\frac{N_t}{M\times N}\sigma^2_{\mathbf{w}_t}}\right). $$
(36)

From the previous equation, one gets:

$$ \sigma^2_{\mathbf{w}} = 255^2\frac{M\times N}{N_v}10^{-\frac{{\rm PSNR}}{10}}, $$
(37)

which gives, once plugged into Eq. 3,

$${\rm WCR} = 10\log_{10}\left(\frac{255^2}{\sigma^2_{\mathbf{x}}}\times\frac{M\times N}{N_v}\right) - {\rm PSNR}. $$
(38)

1.2 A.2 Variable strength embedding

From [10], watermark signal varies with the absolute value of the current wavelet coefficient we want to watermark, assuming that x t (i) is independent from w t (i). We have:

$$ \|\mathbf{w'_t}\|^2 = \frac{1}{\mathbb{E}[|\mathbf{x_t}|]^2}\sum_{i=0}^{\mathit{N}_t-1}{|\mathbf{x_t}(i)|^2\mathbf{w_t}(i)^2} $$
(39)
$$ {\kern4pc} \simeq \frac{1}{\mathbb{E}[|\mathbf{x_t}|]^2}\frac{1}{\mathit{N}_t}\sum_{i=0}^{\mathit{N}_t-1}{\mathbf{x_t}(i)^2}\sum_{i=0}^{\mathit{N}_t-1}{\mathbf{w_t}(i)^2} $$
(40)
$$ {\kern4pc} = \frac{\mathbb{E}[\mathbf{x_t}^2]}{\mathbb{E}[|\mathbf{x_t}|]^2}\|\mathbf{w_t}\|^2. $$
(41)

Equation 34 becomes:

$$ \sigma^2_{\mathbf{w}} = \frac{\mathbb{E}[\mathbf{x_t}^2]}{\mathbb{E}[|\mathbf{x_t}|]^2}\frac{N_t}{N_v}\sigma^2_{\mathbf{w'_t}}. $$
(42)

The same lines as above lead to the final equation for variable strength embedding:

$${\rm WCR} = 10\log_{10}\left(\frac{255^2}{\sigma^2_{\mathbf{x}}}\times\frac{M\times N}{N_v}\times \frac{\mathbb{E}[|\mathbf{x_t}|]^2}{\mathbb{E}[\mathbf{x_t}^2]}\right) - {\rm PSNR}. $$
(43)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathon, B., Bas, P., Cayre, F. et al. Comparison of secure spread-spectrum modulations applied to still image watermarking. Ann. Telecommun. 64, 801 (2009). https://doi.org/10.1007/s12243-009-0119-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12243-009-0119-9

Keywords

Navigation