Skip to main content
Log in

Non-ionizing electromagnetic radiation monitoring in Greece

  • Original Paper
  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

The design, development, and operation of a network for the monitoring of the non-ionizing electromagnetic radiation in Greece is presented in this paper. Two independent sub-networks, called “Hermes” and “pedion24” have been operating since November 2002 in many areas, and more than 4,000,000 electric field strength measurements have been conducted to date. The measurement results indicate that the non-ionizing electromagnetic radiation levels are several times below the European Commission Recommendation 1999/519/EC and the Hellenic Republic Law no. 3431 reference levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The terms uncertainty and error are used interchangeably.

  2. The reason we added GSM-1800 and UMTS 2100 contributions is that in the first model of continuous monitoring stations (EE4070-SL), that was a measured frequency range, and we wanted to directly compare the continuous results to that of ad hoc measurements.

References

  1. European Commission (EC) (1999) Council Recommendation 1999/519/EC of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz). Off J Eur Commun L 199, 59 (30 July)

    Google Scholar 

  2. Hellenic Republic Law No. 3431 (2006) About electronic communications and other provisions. Government Gazette, FEK No. 13 A’/ 03.02.

  3. Oliveira C, Sebastiao D, Carpinteiro G, Correia LM, Fernandes CA, Serralha A, Marques N (2007) The monIT Project: electromagnetic radiation exposure assessment in mobile communications. IEEE Antennas and Propagation Magazine 49(1):44–53 (Feb 2007)

  4. “monIT Project web-site”. Electromagnetic radiation monitoring in mobile communications, http://www.lx.it.pt/monit/

  5. “Cassiopea Project”. http://www.stroud.gov.uk/docs/cassiopea/cassiopea.asp

  6. “Progett Gardjola”. http://gardjola.eng.um.edu.mt/emr

  7. “Project Horus”. http://www.projecthorus.com/EMF/

  8. “Hermes” project. A project for systematic measurements of the electromagnetic radiation, http://www.hermes-program.gr

  9. “pedion24” project. A project for continuous measurements of the electromagnetic radiation, http://www.pedion24.ntua.gr

  10. Narda Area Monitor System 2600, “Narda Safety Test Solutions”, http://www.narda-sts.com/en/produkte/2600.htm

  11. PMM 8057 Electric and Magnetic Field Monitoring Station. “PMM Safety Products”, http://www.pmm.it/main/safetyproducts.asp

  12. EE4070, EE4070S, MCE Monitoring System. “E.I.T. s.r.l”, http://www.eitsrl.it/iMCE.htm

  13. Antennessa EMF Measurement Systems, http://www.antennessa.com/emfmeasurementsystems.php

  14. R&S® FSH6 Handheld Spectrum Analyzer. “Rohde-Schwarz”, http://www2.rohde-schwarz.com/

  15. Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT): ECC recommendation (02)04 “measuring non-ionising electromagnetic radiation (9 kHz–300 GHz)”

  16. Yalofas A, Gotsis A, Veranopoulos C, Constantinou P, Belesiotis G, Petkaris M, Babalis N (2003) A fully automated and geographically distributed network for the continuous measurement of the RF Radiation—“Hermes” Project. TELSICS, IEEE 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services, Niš, Yugoslavia, October

  17. ETSI TR 100 028-1 (2001) Electromagnetic compatibility and radio spectrum matters (ERM): uncertainties in the measurement of mobile radio equipment characteristics; Part 1. v1.4.1, December

  18. ETSI TR 100 028 - 2 (2001) Electromagnetic compatibility and radio spectrum matters (ERM): uncertainties in the measurement of mobile radio equipment characteristics; Part 2. v1.4.1, December

  19. UKAS (2000) The expression of uncertainty in testing, edn 1, October

  20. Vern Lindberg (2000) Uncertainties and error propagation, part I of a manual on uncertainties, graphing, and the Vernier caliper”, http://www.rit.edu/~uphysics/uncertainties/Uncertaintiespart1.html

  21. Gotsis A, Yalofas A, Veranopoulos C, Constantinou P (2003) Design and development of an automated web controlled measurement network for the RF field strength monitoring. IEEE Region 8 EUROCON, The International Conference on Computer as a Tool, Ljubljana, Slovenia, September

  22. Eric W. Weisstein et al. (2005) Normal distribution at MathWorld, (http://mathworld.wolfram.com/NormalDistribution.html). Electronic document, March 20

  23. OriginLab Origin. The nonlinear least squares fitter, fitting results.

  24. Narda Selective Radiation Meter SRM-3000. “Narda safety test solutions”, http://www.narda-sts.com/en/produkte/srm.htm

  25. Gotsis A, Yalofas A, Constantinou P, Boursianis A, Ganatsos T, Tachas N, Samaras T, Daskalou T, Petkaris M (2004) Installation and operation of an EM radiation monitoring network in Greece. Third International Workshop on Biological Effects of Electromagnetic Fields, Kos, Greece, October

  26. Komnakos D, Gotsis A et al (2006) Design, development and operation of an electromagnetic radiation monitoring network in Greece: “Hermes” project. Fourth International Workshop on Biological Effects of Electromagnetic Fields, Crete, Greece, October

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonis Gotsis.

Appendices

Appendix 1

Narda SRM-3000 Uncertainty Datasheet

Standard Uncertainty of SRM-3000

Conditions:

Antenna: Triaxial Probe (75–3,000 MHz)

Antenna Cable, 1.5 m

Temperature range, +15°C…+30°C

Uncertainty in (%; as ± values)

Frequency (MHz)

75–300

301–600

601–900

901–1,200

1,201–1,400

1,401–1,600

1,601–1,800

1,801–2,200

2,201–2,700

2,701–3,000

Level measurement accuracy

8.07

8.07

8.07

8.07

8.07

8.07

8.07

8.07

12.95

12.95

Instrument frequency response

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

Instrument linearity

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Antenna factor calibration

6.10

9.43

9.43

9.43

9.43

9.43

6.10

6.10

6.10

6.10

Antenna frequency response

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

Ellipse radio

3.42

3.42

3.42

5.57

5.57

8.94

8.94

10.88

12.89

19.26

Cable attenuation

1.16

1.16

1.16

1.16

1.16

1.16

1.16

1.16

1.16

1.16

Cable frequency response

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

Mismatch antenna–cable

4.46

4.46

4.07

3.97

3.97

3.97

2.83

2.83

3.16

3.16

Mismatch cable–SRM unit

1.77

1.77

1.77

1.77

1.77

1.77

1.77

1.77

1.77

2.23

Mismatch antenna–SRM unit

11.15

10.25

8.84

8.84

8.13

8.13

5.66

5.66

5.92

7.15

rss combined standard uncertainty (%)

16.2

17.2

16.3

16.8

16.5

17.9

15.1

16.3

20.5

25.4

expanded uncertaity (k = 1.96) [%]

31.8

33.7

31.9

33.0

32.3

35.1

29.5

31.9

40.2

49.7

Appendix 2

Safety index measurement uncertainty evaluation

The exposure quotient is defined as \(x = \sum\limits_{i = 75\operatorname{MHz} }^{3\operatorname{GHz} } {\left\{ {\left( {\frac{{E_i }}{{E_{\lim ,i} }}} \right)^2 } \right\}} \), and for an arbitrary frequency i, the following formulas hold: \(E_i \pm \Delta E_i {\text{,}}\), where \(\Delta E_i = E_i \times \delta E_i = E_i \times \sigma _{{\rm E}_i } \)and \({\text{ }}\sigma _{{\rm E}_i } \) is the combined standard uncertainty.

First, we evaluate the uncertainty of the arbitrary term \(\left( {\frac{{E_i }}{{E_{\lim ,i} }}} \right)^2 \) of the sum. We define: \(K_i = \frac{{E_i }}{{E_{\lim ,i} }},\), thus, \(\Delta K_i = \sigma _{{\rm K}_i } = \frac{{\Delta {\rm E}_i }}{{{\rm E}_{\lim ,i} }} = \frac{{\delta {\rm E}_i \times {\rm E}_i }}{{{\rm E}_{\lim ,i} }}\). Next we define \(z = K_i^2 = \left( {\frac{{E_i }}{{E_{o\rho ,i} }}} \right)^2 \), and we evaluate Δz:

$$z = K_i^2 \Rightarrow z + \Delta z = \left( {K_i + \Delta K_i } \right)^2 \Rightarrow z + \Delta z = K_I^2 + 2 \cdot \;K_i \; \cdot \Delta K_i + \left( {\Delta K_i } \right)^2 \Rightarrow \Delta z = 2{\kern 1pt} \cdot {\kern 1pt} {\kern 1pt} K_i {\kern 1pt} \cdot \Delta K_i ,$$

where the term \(\left( {\Delta K_i } \right)^2 \)is ignored due to its minor contribution to the sum.

Next, we evaluate the uncertainty of the terms summation by applying the following propagation mechanism.

If x, y, z…are random variables and their uncertainty values are Δx, Δy, Δz…correspondingly, then for the variable α = x + y + z +…we have \(\Delta \alpha = \sqrt {\left( {\Delta x} \right)^2 + \left( {\Delta y} \right)^2 + \left( {\Delta z} \right)^2 + ...} \) Therefore, for the exposure quotient x we have:

$$\Delta x = \sqrt {\sum\limits_i {\left\{ {\left( {\Delta z} \right)^2 } \right\}} } = \sqrt {\sum\limits_i {\left\{ {\left( {2 \cdot K_i \cdot \Delta K_i } \right)^2 } \right\}} } = \sqrt {\sum\limits_i {\left\{ {\left( {2 \cdot K_i \cdot \Delta K_i } \right)^2 } \right\}} } = \sqrt {\sum\limits_i {\left\{ {\left( {2 \cdot \frac{{E_i }}{{E_{\lim ,i} }} \cdot \frac{{\delta {\rm E}_i \times {\rm E}_i }}{{{\rm E}_{\lim ,i} }}} \right)^2 } \right\}} } \Rightarrow \Delta x = 2 \cdot \sqrt {\sum\limits_i {\left\{ {\left( {\left( {\frac{{E_i }}{{E_{\lim ,i} }}} \right)^2 \cdot \delta {\rm E}_i } \right)^2 } \right\}} } {\kern 3pt} or {\kern 5pt} \delta x = \frac{{\Delta x}}{x} = \frac{{2 \cdot \sqrt {\sum\limits_i {\left\{ {\left( {\left( {\frac{{E_i }}{{E_{\lim ,i} }}} \right)^2 \cdot \delta {\rm E}_i } \right)^2 } \right\}} } }}{{\sum\limits_i {\left( {\frac{{E_i }}{{E_{\lim ,i} }}} \right)^2 } }}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotsis, A., Papanikolaou, N., Komnakos, D. et al. Non-ionizing electromagnetic radiation monitoring in Greece. Ann. Telecommun. 63, 109–123 (2008). https://doi.org/10.1007/s12243-007-0006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-007-0006-1

Keywords

Navigation