Skip to main content

Advertisement

Log in

Exhaust Emissions and Aftertreatments of Hydrogen Internal Combustion Engines: A Review

  • Invited Review
  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

Adopting carbon-neutral fuels is paramount to aligning internal combustion engines with global efforts to mitigate the impact of global warming. Hydrogen offers distinct advantages over other renewable fuels owing to its superior combustion properties. This comprehensive review explores three fuel injection systems suitable for using hydrogen as a fuel: mixers, port injections, and direct injections. Subsequently, we examined the emission characteristics of hydrogen internal combustion engines (HICE). Although nitric oxides (NOx) is the major emission from HICE, small quantities of hydrocarbon, CO, and CO2 should be expected due to engine oil burn. Moreover, we provide a concise overview of aftertreatment options, including urea-based selective catalytic reduction (SCR) and hydrogen-assisted SCR (H2-SCR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

LPG:

liquefied petroleum gas

CNG:

compressed natural gas

NOx:

nitric oxides

BSFC:

brake specific fuel consumption

SI:

spark ignition

CI:

compression ignition

HCCI:

homogeneous charge compression ignition

EGR:

exhaust gas recirculation

FKGR:

flame kernel growth rate

TWC:

three-way catalyst

HICE:

hydrogen internal combustion engine

SCR:

selective catalytic reduction

ASC:

ammonia slip catalyst

FTP:

federal test protocol

H2-SCR:

hydrogen-assisted selective catalytic reduction

References

  • Akcay, M., Yilmaz, I. T. and Feyzioglu, A. (2021). The influence of hydrogen addition on the combustion characteristics of a common-rail CI engine fueled with waste cooking oil biodiesel/diesel blends. Fuel Processing Technology, 223, 106999.

    Article  Google Scholar 

  • aus der Wiesche, S. (2007). Numerical heat transfer and thermal engineering of AdBlue (SCR) tanks for combustion engine emission reduction. Applied Thermal Engineering 27, 11–12, 1790–1798.

    Article  Google Scholar 

  • Babayev, R., Andersson, A., Dalmau, A. S., Im, H. G. and Johansson, B. (2021). Computational characterization of hydrogen direct injection and nonpremixed combustion in a compression-ignition engine. Int. J. Hydrogen Energy 46, 35, 18678–18696.

    Article  Google Scholar 

  • Bao, L. Z., Sun, B. G. and Luo, Q. H. (2022a). Experimental investigation of the achieving methods and the working characteristics of a near-zero NOx emission turbocharged direct-injection hydrogen engine. Fuel, 319, 123746.

    Article  Google Scholar 

  • Bao, L. Z., Sun, B. G., Luo, Q. H., Gao, Y. L., Wang, X., Liu, F. S., and Li, C. (2020). Simulation and experimental study of the NOx reduction by unburned H2 in TWC for a hydrogen engine. Int. J. Hydrogen Energy 45, 39, 20491–20500.

    Article  Google Scholar 

  • Bao, L. Z., Sun, B. G., Luo, Q. H., Li, J. C., Qian, D. C., Ma, H. Y. and Guo, Y. J. (2022b). Development of a turbocharged direct-injection hydrogen engine to achieve clean, efficient, and high-power performance. Fuel, 324, 124713.

    Article  Google Scholar 

  • Berckmüller, M., Rottengruber, H., Eder, A., Brehm, N., Elsässer, G., Müller-Alander, G. and Schwarz, C. (2003). Potentials of a charged SI-hydrogen engine. SAE Paper No. 2003-01-3210.

  • Börnhorst, M. and Deutschmann, O. (2021). Advances and challenges of ammonia delivery by urea-water sprays in SCR systems. Progress in Energy and Combustion Science, 87, 100949.

    Article  Google Scholar 

  • Choi, B. C., Kim, Y. K., Jhung, W. N., Lee, C. H. and Hwang, C. Y. (2013). Experimental investigation on melting characteristics of frozen urea–water-solutions for a diesel SCR de-NOx-system. Applied Thermal Engineering 50, 1, 1235–1245.

    Article  Google Scholar 

  • Costa, C. N. and Efstathiou, A. M. (2004). Pt/Mg-Ce-O catalyst for NO/H2/O2 lean de-NOx reaction. Environmental Chemistry Letters, 2, 55–58.

    Article  Google Scholar 

  • Costa, C. N. and Efstathiou, A. M. (2007a). Low-temperature H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst. Applied Catalysis B: Environmental 72, 3–4, 240–252.

    Article  Google Scholar 

  • Costa, C. N. and Efstathiou, A. M. (2007b). Mechanistic aspects of the H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst. The J. Physical Chemistry C 111, 7, 3010–3020.

    Article  Google Scholar 

  • Dahake, M. R. and Patil, S. E. (2022). Experimental study on CNG engine with different ventury configuration. Materials Today: Proceedings, 55, 388–393.

    Google Scholar 

  • Dhainaut, F., Pietrzyk, S. and Granger, P. (2007). NO+H2 reaction on Pd/Al2O3 under lean conditions: Kinetic study. Topics in Catalysis 42, 1–4, 135–141.

    Article  Google Scholar 

  • Dhyani, V. and Subramanian, K. A. (2019). Control of backfire and NOx emission reduction in a hydrogen fueled multi-cylinder spark ignition engine using cooled EGR and water injection strategies. Int. J. Hydrogen Energy 44, 12, 6287–6298.

    Article  Google Scholar 

  • Dhyani, V. and Subramanian, K. A. (2021). Development of online control system for elimination of backfire in a hydrogen fuelled spark ignition engine. Int. J. Hydrogen Energy 46, 27, 14757–14763.

    Article  Google Scholar 

  • El-Sharkawy, A. E., Kalantzis, P. D., Syed, M. A. and Snyder, D. J. (2009). Thermal analysis of urea tank solution warm up for selective catalytic reduction (SCR). SAE Int. J. Passenger Cars-Mechanical Systems 2, 1, 1042–1049.

    Article  Google Scholar 

  • Gao, J., Wang, X., Song, P., Tian, G. and Ma, C. (2022). Review of the backfire occurrences and control strategies for port hydrogen injection internal combustion engines. Fuel, 307, 121553.

    Article  Google Scholar 

  • Guan, B., Zhan, R., Lin, H. and Huang, Z. (2014). Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Applied Thermal Engineering 66, 1–2, 395–414.

    Article  Google Scholar 

  • Han, W., Dai, P., Gou, X. and Chen, Z. (2020). A review of laminar flame speeds of hydrogen and syngas measured from propagating spherical flames. Applications in Energy and Combustion Science, 1, 100008.

    Article  Google Scholar 

  • Hansen, T. A. (2007). NYSERDA Clean Diesel Technology: Nonroad Field Demonstration Program, Interim Report. Southern Research Institute, Research Triangle Park, NC.

    Google Scholar 

  • Hao, D., Mehra, R. K., Luo, S., Nie, Z., Ren, X. and Fanhua, M. (2020). Experimental study of hydrogen enriched compressed natural gas (HCNG) engine and application of support vector machine (SVM) on prediction of engine performance at specific condition. Int. J. Hydrogen Energy 45, 8, 5309–5325.

    Article  Google Scholar 

  • Homan, H. S., De Boer, P. C. T. and McLean, W. J. (1983). The effect of fuel injection on NOx emissions and undesirable combustion for hydrogen-fuelled piston engines. Int. J. Hydrogen Energy 8, 2, 131–146.

    Article  Google Scholar 

  • Hu, Z. and Yang, R. T. (2019). 110th anniversary: Recent progress and future challenges in selective catalytic reduction of NO by H2 in the presence of O2. Industrial & Engineering Chemistry Research 58, 24, 10140–10153.

    Article  Google Scholar 

  • Kalamaras, C. M., Olympiou, G. G., Pârvulescu, V. I., Cojocaru, B. and Efstathiou, A. M. (2017). Selective catalytic reduction of NO by H2/C3H over Pt/Ce1−xZrxO2−δ: The synergy effect studied by transient techniques. Applied Catalysis B: Environmental, 206, 308–318.

    Article  Google Scholar 

  • Kawamura, A., Sato, Y., Naganuma, K., Yamane, K. and Takagi, Y. (2010). Development project of a multi-cylinder DISI hydrogen ICE system for heavy duty vehicles. SAE Paper No. 2010-01-2175.

  • Kim, S. and Kim, J. (2023). Assessing fuel economy and NOx emissions of a hydrogen engine bus using neural network algorithms for urban mass transit systems. Energy, 275, 127517.

    Article  Google Scholar 

  • Koebel, M., Elsener, M. and Kleemann, M. (2000). Urea-SCR: A promising technique to reduce NOx emissions from automotive diesel engines. Catalysis Today 59, 3–4, 335–345.

    Article  Google Scholar 

  • Köse, H. and Ciniviz, M. (2013). An experimental investigation of effect on diesel engine performance and exhaust emissions of addition at dual fuel mode of hydrogen. Fuel Processing Technology, 114, 26–34.

    Article  Google Scholar 

  • Lai, F. Y., Sun, B. G., Xiao, G., Luo, Q. H. and Bao, L. Z. (2023). Research on optimizing turbo-matching of a large-displacement PFI hydrogen engine to achieve high-power performance. Int. J. Hydrogen Energy.

  • Lather, R. S. and Das, L. M. (2019). Performance and emission assessment of a multi-cylinder SI engine using CNG & HCNG as fuels. Int. J. Hydrogen Energy 44, 38, 21181–21192.

    Article  Google Scholar 

  • Lee, J., Lee, K., Lee, J. and Anh, B. (2014). High power performance with zero NOx emission in a hydrogen-fueled spark ignition engine by valve timing and lean boosting. Fuel, 128, 381–389.

    Article  Google Scholar 

  • Lee, S., Kim, G. and Bae, C. (2022). Effect of mixture formation mode on the combustion and emission characteristics in a hydrogen direct-injection engine under different load conditions. Applied Thermal Engineering, 209, 118276.

    Article  Google Scholar 

  • Leicht, M., Schott, F. J., Bruns, M. and Kureti, S. (2012). NOx reduction by H2 on WOx/ZrO2-supported Pd catalysts under lean conditions. Applied Catalysis B: Environmental, 117, 275–282.

    Article  Google Scholar 

  • Li, X., Zhang, X., Xu, Y., Liu, Y. and Wang, X. (2015). Influence of support properties on H2 selective catalytic reduction activities and N2 selectivities of Pt catalysts. Chinese J. Catalysis 36, 2, 197–203.

    Article  Google Scholar 

  • Liu, S., Wang, B., Guo, Z., Wang, B., Zhang, Z., Ma, X., Chang, C. T., Wang, P., He, X., Sun, X. and Shuai, S. (2022). Experimental investigation of urea injection strategy for close-coupled SCR aftertreatment system to meet ultra-low NOx emission regulation. Applied Thermal Engineering, 205, 117994.

    Article  Google Scholar 

  • Liu, Z., Li, J. and Woo, S. I. (2012). Recent advances in the selective catalytic reduction of NOx by hydrogen in the presence of oxygen. Energy & Environmental Science 5, 10, 8799–8814.

    Article  Google Scholar 

  • Luo, Q. H., Hu, J. B., Sun, B. G., Liu, F. S., Wang, X., Li, C. and Bao, L. Z. (2019). Experimental investigation of combustion characteristics and NOx emission of a turbocharged hydrogen internal combustion engine. Int. J. Hydrogen Energy 44, 11, 5573–5584.

    Article  Google Scholar 

  • Luo, Z., Zhou, S., Wang, T., Su, B. and Li, R. (2023). The weakening effect of the inhibition of CO2 on the explosion of HCNG with the increase of hydrogen: Experimental and chemical kinetic research. Int. J. Hydrogen Energy.

  • Mahmood, H. A., Adam, N. M., Sahari, B. B. and Masuri, S. U. (2018). Development of a particle swarm optimisation model for estimating the homogeneity of a mixture inside a newly designed CNG-H2-AIR mixer for a dual fuel engine: An experimental and theoretic study. Fuel, 217, 131–150.

    Article  Google Scholar 

  • Matthias, N. S., Wallner, T. and Scarcelli, R. (2012). A hydrogen direct injection engine concept that exceeds US DOE light-duty efficiency targets. SAE Int. J. Engines 5, 3, 838–849.

    Article  Google Scholar 

  • Maurya, R. K. and Akhil, N. (2017). Development of a new reduced hydrogen combustion mechanism with NOx and parametric study of hydrogen HCCI combustion using stochastic reactor model. Energy Conversion and Management, 132, 65–81.

    Article  Google Scholar 

  • Mogi, Y., Oikawa, M., Kichima, T., Horiguchi, M., Goma, K., Takagi, Y. and Mihara, Y. (2022). Effect of high compression ratio on improving thermal efficiency and NOx formation in jet plume controlled direct-injection near-zero emission hydrogen engines. Int. J. Hydrogen Energy 47, 73, 31459–31467.

    Article  Google Scholar 

  • Mohamad, T. I. and Moria, H. (2019). Performance and emissions of a hydrogen-enriched natural gas spark ignition engine with a dynamic-homogeneous mixer. Energy Procedia, 158, 1924–1929.

    Article  Google Scholar 

  • Muhssen, H. S., Masuri, S. U., Sahari, B. B. and Hairuddin, A. A. (2021). Design improvement of compressed natural gas (CNG)-Air mixer for diesel dual-fuel engines using computational fluid dynamics. Energy, 216, 118957.

    Article  Google Scholar 

  • Nguyen, D., Choi, Y., Park, C., Kim, Y. and Lee, J. (2021). Effect of supercharger system on power enhancement of hydrogen-fueled spark-ignition engine under low-load condition. Int. J. Hydrogen Energy 46, 9, 6928–6936.

    Article  Google Scholar 

  • Oh, S., Kim, C., Lee, Y., Park, H., Lee, J., Kim, S. and Kim, J. (2022). Analysis of the exhaust hydrogen characteristics of high-compression ratio, ultra-lean, hydrogen spark-ignition engine using advanced regression algorithms. Applied Thermal Engineering, 215, 119036.

    Article  Google Scholar 

  • Oh, S., Kim, C., Lee, Y., Yoon, S., Lee, J. and Kim, J. (2019). Experimental investigation of the hydrogen-rich offgas spark ignition engine under the various compression ratios. Energy Conversion and Management, 201, 112136.

    Article  Google Scholar 

  • Pandey, J. K. and Kumar, G. N. (2022). Effect of variable compression ratio and equivalence ratio on performance, combustion and emission of hydrogen port injection SI engine. Energy, 239, 122468.

    Article  Google Scholar 

  • Park, H., Lee, J., Jamsran, N., Oh, S., Kim, C., Lee, Y. and Kang, K. (2021). Comparative assessment of stoichiometric and lean combustion modes in boosted spark-ignition engine fueled with syngas. Energy Conversion and Management, 239, 114224.

    Article  Google Scholar 

  • Salvi, B. L. and Subramanian, K. A. (2016). Experimental investigation on effects of exhaust gas recirculation on flame kernel growth rate in a hydrogen fuelled spark ignition engine. Applied Thermal Engineering, 107, 48–54.

    Article  Google Scholar 

  • Saravanan, N., Nagarajan, G., Dhanasekaran, C. and Kalaiselvan, K. M. (2007). Experimental investigation of hydrogen port fuel injection in DI diesel engine. Int. J. Hydrogen Energy 32, 16, 4071–4080.

    Article  Google Scholar 

  • Scheuer, A., Hauptmann, W., Drochner, A., Gieshoff, J., Vogel, H. and Votsmeier, M. (2012). Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation. Applied Catalysis B: Environmental, 111, 445–455.

    Article  Google Scholar 

  • Seboldt, D., Mansbart, M., Grabner, P. and Eichlseder, H. (2021). Hydrogen engines for future passenger cars and light commercial vehicles. MTZ Worldwide 82, 2, 42–47.

    Article  Google Scholar 

  • Shi, W., Yu, X., Zhang, H. and Li, H. (2017). Effect of spark timing on combustion and emissions of a hydrogen direct injection stratified gasoline engine. Int. J. Hydrogen Energy 42, 8, 5619–5626.

    Article  Google Scholar 

  • Spiteri, A., Eggenschwiler, P. D., Liao, Y., Wigley, G., Michalow-Mauke, K. A., Elsener, M., Kröcher, O. and Boulouchos, K. (2015). Comparative analysis on the performance of pressure and air-assisted urea injection for selective catalytic reduction of NOx. Fuel, 161, 269–277.

    Article  Google Scholar 

  • Stelwagen, U. and Ligterink, N. E. (2014). CO2 emission from urea consumption in SCR after-treatment systems in heavy-duty vehicles. TNO Report.

  • Stenlåås, O., Christensen, M., Egnell, R., Johansson, B. and Mauss, F. (2004). Hydrogen as homogeneous charge compression ignition engine fuel. SAE Trans., 1317–1326.

  • Sterlepper, S., Fischer, M., Claßen, J., Huth, V. and Pischinger, S. (2021). Concepts for hydrogen internal combustion engines and their implications on the exhaust gas aftertreatment system. Energies, 14, 23, 8166.

    Article  Google Scholar 

  • Supee, A., Shafeez, M. S., Mohsin, R. and Majid, Z. A. (2014). Performance of diesel-compressed natural gas (CNG) dual fuel (DDF) engine via CNG-air venturi mixjector application. Arabian J. Science and Engineering, 39, 7335–7344.

    Article  Google Scholar 

  • Szwaja, S., Bhandary, K. R. and Naber, J. D. (2007). Comparisons of hydrogen and gasoline combustion knock in a spark ignition engine. Int. J. Hydrogen Energy 32, 18, 5076–5087.

    Article  Google Scholar 

  • Tang, X., Kabat, D. M., Natkin, R. J., Stockhausen, W. F. and Heffel, J. (2002). Ford P2000 hydrogen engine dynamometer development. SAE Trans., 631–642.

  • Ueda, A., Nakao, T., Azuma, M. and Kobayashi, T. (1998). Two conversion maxima at 373 and 573 K in the reduction of nitrogen monoxide with hydrogen over Pd/TiO2 catalyst. Catalysis Today 45, 1–4, 135–138.

    Article  Google Scholar 

  • Verhelst, S., Demuynck, J., Sierens, R., Scarcelli, R., Matthias, N. S. and Wallner, T. (2013). Update on the Progress of Hydrogen-Fueled Internal Combustion Engines. Renewable Hydrogen Technologies (pp. 381-400).

  • Wang, L., Yang, Z., Huang, Y., Liu, D., Duan, J., Guo, S. and Qin, Z. (2017). The effect of hydrogen injection parameters on the quality of hydrogen-air mixture formation for a PFI hydrogen internal combustion engine. Int. J. Hydrogen Energy 42, 37, 23832–23845.

    Article  Google Scholar 

  • Wang, S., Ji, C., Zhang, B. and Liu, X. (2014). Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition. Applied Energy, 136, 43–50.

    Article  Google Scholar 

  • Xie, C., Sun, B. and Zhen, H. (2017). Investigation on jet characteristics of hydrogen injection and injection strategy for backfire control in a port fuel injection hydrogen engine. Energy Procedia, 105, 1588–1599.

    Article  Google Scholar 

  • Yang, Z., Zhang, F., Wang, L., Wang, K. and Zhang, D. (2018). Effects of injection mode on the mixture formation and combustion performance of the hydrogen internal combustion engine. Energy, 147, 715–728.

    Article  Google Scholar 

  • Yip, H. L., Srna, A., Yuen, A. C. Y., Kook, S., Taylor, R. A., Yeoh, G. H., Medwell, P. R. and Chan, Q. N. (2019). A review of hydrogen direct injection for internal combustion engines: Towards carbon-free combustion. Applied Sciences 9, 22, 4842.

    Article  Google Scholar 

  • Yusaf, T., Baker, P., Hamawand, I. and Noor, M. M. (2013). Effect of compressed natural gas mixing on the engine performance and emissions. Int. J. Automotive and Mechanical Engineering 8, 1, 1416–1429.

    Article  Google Scholar 

  • Zhao, Q., Li, J., Jiao, A., Liu, F., Xu, H. and Liao, X. (2023). Pollutant emission characteristics of the close-coupled selective catalytic reduction system for diesel engines under low exhaust temperature conditions. Fuel, 354, 129303.

    Article  Google Scholar 

  • Zhao, X., Zhang, X., Xu, Y., Liu, Y., Wang, X. and Yu, Q. (2015). The effect of H2O on the H2-SCR of NOx over Pt/HZSM-5. J. Molecular Catalysis A: Chemical, 400, 147–153.

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to express sincere appreciation to the Engine Research Department at the Korea Institute of Machinery and Materials for the support. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2022R1F1A1073885) and the Technology Innovation Program (20018148) funded by the Ministry of Trade, Industry, & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junghwan Kim.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J. Exhaust Emissions and Aftertreatments of Hydrogen Internal Combustion Engines: A Review. Int.J Automot. Technol. 24, 1681–1690 (2023). https://doi.org/10.1007/s12239-023-0136-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-023-0136-0

Key words

Navigation