Skip to main content
Log in

Optical Study on Spray and Two-Stage Ignition Characteristics for Diesel Spray Under Low Ambient Temperature and Density Conditions

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

Poor atomization and ignition difficulty due to the deterioration of environmental conditions restrict the cold-start performance of diesel engine. To investigate how the ambient and injection parameters affect diesel ignition characteristics at low temperature and density, liquid spray development was measured by back-illumination method; vapor spray and ignition process were visualized using high-speed shadowgraph method in constant volume combustion chamber. The results showed that liquid-vapor penetration and two-stage ignition delay have different sensitivities to variables: the variation of ambient density greatly affects the spray development while ambient temperature is the most significant parameter affecting ignition delay. Additionally, the change of injection pressure cannot cause significant change of both liquid penetration length and low temperature ignition, but increasing injection pressure promoted the vapor penetration length downstream development. Based on the data obtained, the empirical formulation in the form of power function was fitted for the stable stage of liquid penetration length, which proposed a reference for comparing the liquid phase development characteristics of diesel spray. Similarly, revise the Arrhenius-type ignition delay prediction formula and the correction coefficient K (KLTI and KHTI) was optimized quantitatively instead of fixed values, provides a preliminary theoretical basis for subsequent diesel spray model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LPL:

liquid penetration length

LPLm:

mean of the LPL stable stage

VPL:

vapor penetration length

T am :

ambient temperature

LOL:

lift-off length

ρ am :

ambient density

HTI:

high temperature ignition delay

P inj :

injection pressure

LTI:

low temperature ignition delay

T f :

fuel temperature

ID:

ignition delay

t inj :

injection duration

References

  • Assanis, D. N., Filipi, Z. S., Fiveland, S. B. and Syrimis, M. (2003). A predictive ignition delay correlation under steady-state and transient operation of a direct injection diesel engine. J. Eng. Gas Turbines Power 125, 2, 450–457.

    Article  Google Scholar 

  • Benajes, J., Payri, R., Bardi, M. and Martí-Aldaraví, P. (2013). Experimental characterization of diesel ignition and liftoff length using a single-hole ECN injector. Applied Thermal Engineering 58, 1–2, 554–563.

    Article  Google Scholar 

  • Broatch, A., Ruiz, S., Margot, X. and Gil, A. (2010). Methodology to estimate the threshold in-cylinder temperature for self-ignition of fuel during cold start of Diesel engines. Energy 35, 5, 2251–2260.

    Article  Google Scholar 

  • Cavaliere, A., Ciajolo, A., D’anna, A., Mercogliano, R. and Ragucci, R. (1993). Autoignition of n-heptane and n-tetradecane in engine-like conditions. Combustion and Flame 93, 3, 279–286.

    Article  Google Scholar 

  • Dahms, R. N., Paczko, G. A., Skeen, S. A. and Pickett, L. M. (2017). Understanding the ignition mechanism of high-pressure spray flames. Proc. Combustion Institute 36, 2, 2615–2623.

    Article  Google Scholar 

  • Dec, J. E. (1997). A conceptual model of DL diesel combustion based on laser-sheet imaging. SAE Transactions, 1319–1348.

  • Desantes, J. M., Pastor, J. V., García-Oliver, J. M. and Briceño, F. J. (2014). An experimental analysis on the evolution of the transient tip penetration in reacting Diesel sprays. Combustion and Flame 161, 8, 2137–2150.

    Article  Google Scholar 

  • Du, J., Mohan, B., Sim, J., Fang, T. and Roberts, W. L. (2019). Experimental and analytical study on liquid and vapor penetration of high-reactivity gasoline using a high-pressure gasoline multi-hole injector. Applied Thermal Engineering, 163, 114187.

    Article  Google Scholar 

  • Frijters, P. J. M., Vallen, R. G. M., Somers, L. M. T., Luijten, C. C. M. and Baert, R. S. G. (2007). Fuel effects on illumination ignition delay and soot lift-off length in diesel combustion. Third European Combustion Meeting. Chania, Greece.

  • Geng, L., Wang, Y., Wang, J., Wei, Y. and Lee, C. F. F. (2020). Numerical simulation of the influence of fuel temperature and injection parameters on biodiesel spray characteristics. Energy Science & Engineering 8, 2, 312–326.

    Article  Google Scholar 

  • Heywood, J. B. (1998). Internal Combustion Engine Fundamentals. Mc Graw Hill Publishers. New York, USA.

    Google Scholar 

  • Higgins, B., Siebers, D. and Aradi, A. (2000). Diesel-spray ignition and premixed-burn behavior. SAE Transactions, 961–984.

  • Hwang, J., Park, Y., Bae, C., Lee, J. and Pyo, S. (2015). Fuel temperature influence on spray and combustion characteristics in a constant volume combustion chamber (CVCC) under simulated engine operating conditions. Fuel, 160, 424–433.

    Article  Google Scholar 

  • Irannejad, A. and Jaberi, F. (2015). Numerical study of high speed evaporating sprays. Int. J. Multiphase Flow, 70, 58–76.

    Article  Google Scholar 

  • Kahila, H., Wehrfritz, A., Kaario, O., Masouleh, M. G., Maes, N., Somers, B. and Vuorinen, V. (2018). Large-eddy simulation on the influence of injection pressure in reacting Spray A. Combustion and Flame, 191, 142–159.

    Article  Google Scholar 

  • Lapuerta, M., Sanz-Argent, J. and Raine, R. R. (2014). Ignition characteristics of diesel fuel in a constant volume bomb under diesel-like conditions. Effect of the operation parameters. Energy & Fuels 28, 8, 5445–5454.

    Article  Google Scholar 

  • Li, Y., Li, X., Cao, W., Shi, Z., Bo, Y. and Wu, H. (2021a). Acting mechanism of low ambient temperature on wall-impinging diesel spray ignition at an extensive range. Fuel, 304, 121344.

    Article  Google Scholar 

  • Li, Y., Sun, C., Shi, Z., Gao, Y., Zhang, L., Chen, H. and Wang, M. (2021b). Experimental and Kinetic Study on the Critical Ambient Density for Auto-ignition of the Diesel Spray under Cold-start Conditions. Combustion Science and Technology, 1–25.

  • Li, Y., Wang, D., Shi, Z., Chen, H. and Liu, F. (2021c). Environment-adaptive method to control intake preheating for diesel engines at cold-start conditions. Energy, 227, 120423.

    Article  Google Scholar 

  • Liu, F., Shi, Z., Zhang, Z., Li, Y. and Sun, C. (2019). Numerical study on critical ambient temperature for auto-ignition of the diesel spray under cold-start conditions. Fuel, 258, 116191.

    Article  Google Scholar 

  • Liu, F., Zhang, Z., Wu, H., Li, Y., Ma, Y., Li, X. and Du, W. (2017). An investigation on a diesel jet’s ignition characteristics under cold-start conditions. Applied Thermal Engineering, 121, 511–519.

    Article  Google Scholar 

  • Musculus, M. P., Miles, P. C. and Pickett, L. M. (2013). Conceptual models for partially premixed low-temperature diesel combustion. Progress in Energy and Combustion Science 39, 2–3, 246–283.

    Article  Google Scholar 

  • Nabi, M. N., Rasul, M. G. and Brown, R. J. (2020). Notable reductions in blow-by and particle emissions during cold and hot start operations from a turbocharged diesel engine using oxygenated fuels. Fuel Processing Technology, 203, 106394.

    Article  Google Scholar 

  • Ong, J. C., Walther, J. H., Xu, S., Zhong, S., Bai, X. S. and Pang, K. M. (2021). Effects of ambient pressure and nozzle diameter on ignition characteristics in diesel spray combustion. Fuel, 290, 119887.

    Article  Google Scholar 

  • Pang, K. M., Jangi, M., Bai, X. S., Schramm, J., Walther, J. H. and Glarborg, P. (2019). Effects of ambient pressure on ignition and flame characteristics in diesel spray combustion. Fuel, 237, 676–685.

    Article  Google Scholar 

  • Park, Y., Hwang, J., Bae, C., Kim, K., Lee, J. and Pyo, S. (2015). Effects of diesel fuel temperature on fuel flow and spray characteristics. Fuel, 162, 1–7.

    Article  Google Scholar 

  • Pastor, J. V., García-Oliver, J. M., Pastor, J. M. and Ramírez-Hernández, J. G. (2011). Ignition and combustion development for high speed direct injection diesel engines under low temperature cold start conditions. Fuel 90, 4, 1556–1566.

    Article  Google Scholar 

  • Payri, R., García-Oliver, J. M., Bardi, M. and Manin, J. (2012). Fuel temperature influence on diesel sprays in inert and reacting conditions. Applied Thermal Engineering, 35, 185–195.

    Article  Google Scholar 

  • Payri, R., García-Oliver, J. M., Xuan, T. and Bardi, M. (2015). A study on diesel spray tip penetration and radial expansion under reacting conditions. Applied Thermal Engineering, 90, 619–629.

    Article  Google Scholar 

  • Payri, R., Gimeno, J., Bardi, M. and Plazas, A. H. (2013). Study liquid length penetration results obtained with a direct acting piezo electric injector. Applied Energy, 106, 152–162.

    Article  Google Scholar 

  • Payri, R., Salvador, F. J., Gimeno, J. and Peraza, J. E. (2016a). Experimental study of the injection conditions influence over n-dodecane and diesel sprays with two ECN single-hole nozzles. Part II: Reactive atmosphere. Energy Conversion and Management, 126, 1157–1167.

    Article  Google Scholar 

  • Payri, R., Salvador, F. J., Manin, J. and Viera, A. (2016b). Diesel ignition delay and lift-off length through different methodologies using a multi-hole injector. Applied Energy, 162, 541–550.

    Article  Google Scholar 

  • Pickett, L. M. and Siebers, D. L. (2004). Soot in diesel fuel jets: effects of ambient temperature, ambient density, and injection pressure. Combustion and Flame 138, 1–2, 114–135.

    Article  Google Scholar 

  • Pickett, L. M., Kook, S. and Williams, T. C. (2009). Visualization of diesel spray penetration, cool-flame, ignition, high-temperature combustion, and soot formation using high-speed imaging. SAE Int. J. Engines 2, 1, 439–459.

    Article  Google Scholar 

  • Pickett, L. M., Siebers, D. L. and Idicheria, C. A. (2005). Relationship between ignition processes and the lift-off length of diesel fuel jets. SAE Transactions, 1714–1731.

  • Roberts, A., Brooks, R. and Shipway, P. (2014). Internal combustion engine cold-start efficiency: A review of the problem, causes and potential solutions. Energy Conversion and Management, 82, 327–350.

    Article  Google Scholar 

  • Shi, Z., Lee, C. F., Wu, H., Li, H., Wu, Y., Zhang, L., Bo, Y. and Liu, F. (2020a). Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions. Applied Energy, 262, 114552.

    Article  Google Scholar 

  • Shi, Z., Liu, F., Shang, W., Li, Y., Sun, C. and Zhu, M. (2020b). Numerical study on the influence of injection pressure on the ignition and combustion of n-dodecane spray at cold-start conditions. Fuel, 264, 116882.

    Article  Google Scholar 

  • Shi, Z., Wu, H., Li, H., Zhang, L., Li, X. and Lee, C. F. (2021). Effect of injection pressure and fuel mass on wall-impinging ignition and combustion characteristics of heavy-duty diesel engine at low temperatures. Fuel, 299, 120904.

    Article  Google Scholar 

  • Siebers, D. and Higgins, B. (2001). Flame lift-off on direct-injection diesel sprays under quiescent conditions. SAE Transactions, 400–421.

  • Skeen, S. A., Manin, J. and Pickett, L. M. (2015). Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames. Proc. Combustion Institute 35, 3, 3167–3174.

    Article  Google Scholar 

  • Wang, D., Shi, Z., Yang, Z., Chen, H., Wang, M. and Li, Y. (2022). Experimental study of wall-impinging diesel spray ignition and combustion characteristics under critical conditions. Fuel, 308, 121976.

    Article  Google Scholar 

  • Wu, H., Zhang, L., Li, H., Ma, Y. and Liu, F. (2021). The optical investigation on initial flame developing characteristics of diesel jet under cold start conditions. Combustion Science and Technology 193, 10, 1696–1717.

    Article  Google Scholar 

  • Zhou, X., Li, T., Lai, Z. and Wei, Y. (2019). Modeling diesel spray tip and tail penetrations after end-of-injection. Fuel, 237, 442–456.

    Article  Google Scholar 

  • Zhou, Y., Qi, W. and Zhang, Y. (2020). Investigation on cyclic variation of diesel spray and a reconsideration of penetration model. Energy, 211, 118605.

    Article  Google Scholar 

Download references

Acknowledgement

This material is based upon work supported by the Beijing Natural Science Foundation [Grant No.: 3212022], National Natural Science Foundation of China [Grant No.: 51976011] and China Postdoctoral Science Foundation [2020M 680378]. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongjie Shi.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xue, Z., Shi, Z. et al. Optical Study on Spray and Two-Stage Ignition Characteristics for Diesel Spray Under Low Ambient Temperature and Density Conditions. Int.J Automot. Technol. 24, 1241–1257 (2023). https://doi.org/10.1007/s12239-023-0101-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-023-0101-y

Key Words

Navigation