Skip to main content
Log in

Cooperative Preview Following Control of Intelligent Multiple-Vehicle System

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

This paper introduces a design and analysis method of the intelligent multiple-vehicle system (IMVS) based on preview control in the environment of the vehicle to vehicle (V2V). Considering the time delay, the vehicle longitudinal dynamics system is constructed. The information flow between vehicles in the platoon is realized by the onboard sensors and V2V. Based on the actual data sampling and processing, the cooperative optimal preview control problem of the vehicle platoon stability system is discretized. The error is used as a term of the state vector to expand, and the original problem is transformed into an augmented global optimal control problem. The existence and stability of the controller solution are analyzed. The asymptotically stable optimal control law is obtained by using the state augmented matrix, and the global optimal preview controller of original platoon stability is obtained. The simulation results verify the effectiveness of the designed controller. The following error decreases with the increase of the preview step, which ensures the stability of the platoon. From the first follower to the tenth one, the average spacing error decreases by 92.9 %, and the average following error of velocity decreases from 3.97 to 1.56 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bareket, Z., Fancher, P. S., Peng, H., Lee, K. and Assaf, C. A. (2003). Methodology for assessing adaptive cruise control behavior. IEEE Trans. Intelligent Transportation System 4, 3, 123–131.

    Article  Google Scholar 

  • Birla, N. and Swarup, A. (2015). Optimal preview control: A review. Optimal Control Applications and Methods 36, 2, 241–268.

    Article  MathSciNet  MATH  Google Scholar 

  • Brackstone, M. and McDonald, M. (1999). Car-following: A historical review. Transportation Research Part F: Traffic Psychology and Behaviour 2, 4, 181–196.

    Article  Google Scholar 

  • Guo, G. and Yue, W. (2012). Autonomous platoon control allowing range-limited sensors. IEEE Trans. Vehicular Technology 61, 7, 2901–2912.

    Article  Google Scholar 

  • Hong, Y., Hu, J. and Gao, L. (2006). Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42, 7, 1177–1182.

    Article  MathSciNet  MATH  Google Scholar 

  • Ioannou, P. A. (2003). Guest editorial adaptive cruise control systems special issue. IEEE Trans. Intelligent Transportation System 4, 3, 113–114.

    Article  Google Scholar 

  • Ioannou, P. A. and Chien, C. C. (1993). Autonomous intelligent cruise control. IEEE Trans. Vehicular Technology 42, 4, 657–672.

    Article  Google Scholar 

  • Jia, D., Lu, K., Wang, J., Zhang, X. and Shen, X. (2016). A survey on platoon-based vehicular cyber-physical systems. IEEE Communications Surveys & Tutorials 18, 1, 263–284.

    Article  Google Scholar 

  • Katayama, T., Ohki, T., Inoue, T. and Kato, T. (1985). Design of an optimal controller for a discrete-time system subject to previewable demand. Int. J. Control 41, 3, 677–699.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, H., Kim, D., Shu, I. and Yi, K. (2016). Time-varying parameter adaptive vehicle speed control. IEEE Trans. Vehicular Technology 65, 2, 581–588.

    Article  Google Scholar 

  • Liang, C. Y. and Peng, H. (2000). String stability analysis of adaptive cruise controlled vehicles. JSME Int. J. 43, 3, 671–677.

    Article  Google Scholar 

  • Liao, F., Lu, Y. and Liu, H. (2016). Cooperative optimal preview tracking control of continuous-time multi-agent systems. Int. J. Control 89, 10, 2019–2028.

    Article  MathSciNet  MATH  Google Scholar 

  • Livshitz, A. and Idan, M. (2020). Preview control approach for laser-range-finder-based terrain following. IEEE Trans. Aerospace and Electronic Systems 56, 2, 1318–1331.

    Article  Google Scholar 

  • Loan, C. F. V. (2000). The ubiquitous Kronecker product. J. Computational and Applied Mathematics 123, 1, 85–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Lu, Y., Liao, F., Deng, J. and Liu, H. (2017). Cooperative global optimal preview tracking control of linear multi-agent systems: An internal model approach. Int. J. Systems Science 48, 12, 2451–2462.

    Article  MathSciNet  MATH  Google Scholar 

  • Lu, Y., Liao, F., Ren, J., Fu, H. and Sheng, C. (2018). Cooperative optimal preview tracking control of discrete-time multi-agent systems. Chinese. J. Engineering 40, 2, 241–251.

    MATH  Google Scholar 

  • Ma, F., Wang, J., Shu, S., Gelbal, S. Y. and Yang, Y. (2020). Distributed control of cooperative vehicular platoon with nonideal communication condition. IEEE Trans. Vehicular Technology 69, 8, 8207–8220.

    Article  Google Scholar 

  • Makarov, M., Grossard, M., Rodríguez-Ayerbe, P. and Dumur, D. (2016). Modeling and preview H control design for motion control of elastic-joint robots with uncertainties. IEEE Trans. Industrial Electronics 63, 10, 6429–6438.

    Article  Google Scholar 

  • Mei, J., Zheng, K., Zhao, L., Lei, L. and Wang, X. (2018). Joint radio resource allocation and control for vehicle platooning in LTE-V2V network. IEEE Trans. Vehicular Technology 67, 12, 12218–12230.

    Article  Google Scholar 

  • Moser, D., Schmied, R., Waschl, H. and del Re, L. (2018). Flexible spacing adaptive cruise control using stochastic model predictive control. IEEE Trans. Control Systems Technology 26, 1, 114–127.

    Article  Google Scholar 

  • Naus, G., Vugts, R., Ploeg, J., Molengraft, M. and Steinbuch, M. (2010). String-stable CACC design and experimental validation: A frequency domain approach. IEEE Trans. Vehicular Technology 59, 9, 4268–4279.

    Article  Google Scholar 

  • Ozdemir, A. A., Seiler, P. and Balas, G. J. (2013). Design tradeoffs of wind turbine preview control. IEEE Trans. Control Systems Technology 21, 4, 1143–1154.

    Article  Google Scholar 

  • Pipes, L. A. (1953). An operational analysis of traffic dynamics. J. Applied Physics 24, 3, 274–281.

    Article  MathSciNet  Google Scholar 

  • Reuschel, A. (1950). The movement of a column of vehicles when the leading vehicle is uniformly accelerated or decelerated. Magazine of the Austrian Engineer and Architect Association 95, 59–62, 73–77.

    Google Scholar 

  • Saifuzzaman, M. Zheng, Z. (2014). Incorporating human-factors in car-following models: A review of recent developments and research needs. Transportation Research Part C: Emerging Technologies, 48, 379–403.

    Article  Google Scholar 

  • Salton, A. T., Chen, Z., Zheng, J. and Fu, M. (2016). Constrained optimal preview control of dual-stage actuators. IEEE/ASME Trans. Mechatronics 21, 2, 1179–1184.

    Article  Google Scholar 

  • Shakouri, P., Ordys, A., Laila, D. S. and Askari, M. (2011). Adaptive cruise control system: Comparing gain-scheduling PI and LQ controllers. IFAC Proc. Volumes 44, 1, 12964–12969.

    Article  Google Scholar 

  • Sheikholeslam, S. and Desoer, C. A. (1992). A system level study of the longitudinal control of a platoon of vehicles. ASME J. Dynamic Systems, Measurement, Control 114, 2, 286–292.

    Article  Google Scholar 

  • Shin, D., Kim, B., Yi, K., Carvalho, A. and Borrelli, F. (2019). Human-centered risk assessment of an automated vehicle using vehicular wireless communication. IEEE Trans. Intelligent Transportation Systems 20, 2, 667–681.

    Article  Google Scholar 

  • Wen, S. and Guo, G. (2020). Control of leader-following vehicle platoons with varied communication range. IEEE Trans. Intelligent Vehicles 5, 2, 240–250.

    Article  MathSciNet  Google Scholar 

  • Wu, J., Zhou, H., Liu, Z. and Gu, M. (2020). Ride comfort optimization via speed planning and preview semi-active suspension control for autonomous vehicles on uneven roads. IEEE Trans. Vehicular Technology 69, 8, 8343–8355.

    Article  Google Scholar 

  • Xu, S. and Peng, H. (2020). Design, analysis, and experiments of preview path tracking control for autonomous vehicles. IEEE Trans. Intelligent Transportation System 21, 1, 48–58.

    Article  Google Scholar 

  • Xu, S., Peng, H., Song, Z., Chen, K. and Tang, Y. (2020). Design and test of speed tracking control for the self-driving Lincoln MKZ platform. IEEE Trans. Intelligent Vehicles 5, 2, 324–334.

    Article  Google Scholar 

  • Yim, S. (2017). Preview controller design for vehicle stability with V2V communication. IEEE Trans. Intelligent Transportation System 18, 6, 1497–1506.

    Google Scholar 

  • Yim, S. (2019). Active roll preview control with V2V communication. Int. J. Automotive Technology 20, 1, 169–175.

    Article  Google Scholar 

  • Zheng, Y., Li, S. E., Wang, J., Cao, D. and Li, K. (2016). Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies. IEEE Trans. Intelligent Transportation System 17, 1, 14–26.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Yunnan Science and Technology Project under Grant 2019FD071, by Yunnan Scientific Research Foundation Project under Grant 2019J0187, and by the National Natural Science Foundation of China under Grant 62072031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangping Zeng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, N., Zeng, G. & Zhou, X. Cooperative Preview Following Control of Intelligent Multiple-Vehicle System. Int.J Automot. Technol. 24, 323–333 (2023). https://doi.org/10.1007/s12239-023-0027-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-023-0027-4

Key Words

Navigation