Skip to main content
Log in

H Control for Battery/Supercapacitor Hybrid Energy Storage System Used in Electric Vehicles

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

This paper proposes a control strategy of a hybrid energy storage system (HESS) based on simplified 2th-order model. The HESS uses a bidirectional DC/DC converter to connect the supercapacitors (SC) with the battery. Two control objectives, the output current of the SC during the traction procedure and the charging current of the SC while regenerative braking, are regulated by using the DC/DC converter. Two H controllers are designed to control the output and charging current of the SC to their reference values, which are generated by the energy management strategy (EMS). Experimental results show that the proposed control method achieves a satisfactory performance, including a low steady-state tracking error and high response speed when the load power varies in a wide range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burke, A. (2000). Ultracapacitors: Why, how, and where is the technology. J. Power Sources 91, 1, 37–50.

    Article  Google Scholar 

  • Camara, M. B., Gualous, H., Gustin, F., Berthon, A. and Dakyo, B. (2010). DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications - Polynomial control strategy. IEEE Trans. Industrial Electronics 57, 2, 587–597.

    Article  Google Scholar 

  • Chen, Y. and Lu, Z. (2009). Simulation analysis of vertical and lateral dynamics of an electric vehicle driven by two rear hub-motors. Proc. Int. Conf. Mechatronics and Automation, Changchun, China.

    Google Scholar 

  • Du, H., Sze, K. Y. and Lam, J. (2005). Semi-active Hoo control of vehicle suspension with magneto-rheological dampers. J. Sound and Vibration 283, 3, 981–996.

    Article  Google Scholar 

  • Diirr, M., Cruden, A., Gair, S. and McDonald, J. R. (2006). Dynamic model of a lead acid battery for use in a domestic fuel cell system. J. Power Sources 161, 2, 1400–1411.

    Article  Google Scholar 

  • Erdinc, O., Vural, B. and Uzunoglu, M. (2009). A wavelet-fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid vehicular power system. J. Power Sources 194, 1, 369–380.

    Article  Google Scholar 

  • Feng, Z. and Allen, R. (2004). Reduced order H control of an autonomous underwater vehicle. Control Engineering Practice 12, 12, 1511–1520.

    Article  Google Scholar 

  • Garcia, F. S., Ferreira, A. A. and Pomilio, J. A. (2009). Control strategy for battery-ultracapacitor hybrid energy storage system. Proc. 24th Annual IEEE Applied Power Electronics Conf. and Exposition, Washington, D.C., USA.

    Google Scholar 

  • Ghazi, R. and Asgharian Ghannad Yazdi, R. (2003). Robust control of DC/DC PWM converters: A comparison of H, μ, and fuzzy logic based approaches. Proc. IEEE Conf. Control Application, Istanbul, Turkey.

    Google Scholar 

  • Hannan, M. A., Azidin, F. A. and Mohamed, A. (2012). Multi-sources model and control algorithm of an energy management system for light electric vehicles. Energy Conversion and Management, 62, 123–130.

    Article  Google Scholar 

  • Fredzak, B., Agelidis, V. G. and Jang, M. (2014). A model predictive control system for a hybrid battery-ultracapacitor power source. IEEE Trans. Power Electronics 29, 3, 1469–1479.

    Article  Google Scholar 

  • Huang, J., Qin, D. and Peng, Z. (2015). Effect of energy-regenerative braking on electric vehicle battery thermal management and control method based on simulation investigation. Energy Conversion and Management, 105, 1157–1165.

    Article  Google Scholar 

  • Jaafar, A., Akli, C. R., Sareni, B., Roboam, X. and Jeunesse, A. (2009). Sizing and energy management of a hybrid locomotive based on flywheel and accumulators. IEEE Trans. Vehicular Technology 58, 8, 3947–3958.

    Article  Google Scholar 

  • Jung, H., Wang, H. and Hu, T. (2014). Control design for robust tracking and smooth transition in power systems with battery/supercapacitor hybrid energy storage devices. J. Power Sources, 267, 566–575.

    Article  Google Scholar 

  • Kim, Y., Koh, J., Xie, Q., Wang, Y., Chang, N. and Pedram, M. (2014). A scalable and flexible hybrid energy storage system design and implementation. J. Power Sources, 255, 410–422.

    Article  Google Scholar 

  • Liu, C., Ye, D., Shi, K. and Sun, Z. (2017). Robust high-precision attitude control for flexible spacecraft with improved mixed H2/H control strategy under poles assignment constraint. Acta Astronautica, 136, 166–175.

    Article  Google Scholar 

  • Liu, H., Wang, Z., Cheng, J. and Maly, D. (2009). Improvement on the cold cranking capacity of commercial vehicle by using supercapacitor and lead-acid battery hybrid. IEEE Trans. Vehicular Technology 58, 3, 1097–1105.

    Article  Google Scholar 

  • Masih-Tehrani, M., Ha’iri-Yazdi, M. R., Esfahanian, V. and Safaei, A. (2013). Optimum sizing and optimum energy management of a hybrid energy storage system for lithium battery life improvement. J. Power Sources, 244, 2–10.

    Article  Google Scholar 

  • Nairn, R., Weiss, G. and Ben-Yaakov, S. (1997). H control applied to boost power converters. IEEE Trans. Power Electronics 12, 4, 677–683.

    Article  Google Scholar 

  • Pahlevaninezhad, M., Drobnik, J., Jain, F. K. and Bakhshai, A. (2012). A load adaptive control approach for a zero-voltage-switching DC/DC converter used for electric vehicles. IEEE Trans. Industrial Electronics 59, 2, 920–933.

    Article  Google Scholar 

  • Parmar, M. and Hung, J. Y. (2004). A sensorless optimal control system for an automotive electric power assist steering system. IEEE Trans. Industrial Electronics 51, 2, 290–298.

    Article  Google Scholar 

  • Santucci, A., Sorniotti, A. and Lekakou, C. (2014). Power split strategies for hybrid energy storage systems for vehicular applications. J. Power Sources, 258, 395–407.

    Article  Google Scholar 

  • Selman, J. R., Al Hallaj, S., Uchida, I. and Hirano, Y (2001). Cooperative research on safety fundamentals of lithium batteries. J. Power Sources, 97, 726–732.

    Article  Google Scholar 

  • Shin, D. H., Lee, B. H., Jeong, J. B., Song, H. S. and Kim, H. J. (2011). Advanced hybrid energy storage system for mild hybrid electric vehicles. Int. J. Automotive Technology 12, 1, 125–130.

    Article  Google Scholar 

  • Song, Z., Hofmann, H., Li, J., Han, X. and Ouyang, M. (2015). Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach. Applied Energy, 139, 151–162.

    Article  Google Scholar 

  • Song, Z., Hou, J., Hofmann, H., Li, J. and Ouyang, M. (2017). Sliding-mode and Lyapunov function-based control for battery/supercapacitor hybrid energy storage system used in electric vehicles. Energy, 122, 601–612.

    Article  Google Scholar 

  • Song, Z., Hofmann, H., Li, J., Hou, J., Han, X. and Ouyang, M. (2014). Energy management strategies comparison for electric vehicles with hybrid energy storage system. Applied Energy, 134, 321–331.

    Article  Google Scholar 

  • Trovao, J. P., Pereirinha, P. G., Jorge, H. M. and Antunes, C. H. (2013). A multi-level energy management system for multi-source electric vehicles - An integrated rule-based meta-heuristic approach. Applied Energy, 105, 304–318.

    Article  Google Scholar 

  • Vazquez, S., Lukic, S. M., Galvan, E., Franquelo, L. G and Carrasco, J. M. (2010). Energy storage systems for transport and grid applications. IEEE Trans. Industrial Electronics 57, 12, 3881–3895.

    Article  Google Scholar 

  • Wang, B., Xu, J., Cao, B. and Zhou, X. (2015). A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles. J. Power Sources, 281, 432–443.

    Article  Google Scholar 

  • Wang, X., Yu, D., Le Blond, S., Zhao, Z. and Wilson, P. (2017). A novel controller of a battery-supercapacitor hybrid energy storage system for domestic applications. Energy and Buildings, 141, 167–174.

    Article  Google Scholar 

  • Zhao, W. Z., LY J., Wang, C. Y., Zhang, Z. Q. and Xu, C. L. (2013). Research on control strategy for differential steering system based on H mixed sensitivity. Int. J. Automotive Technology 14, 6, 913–919.

    Article  Google Scholar 

  • Zheng, J. P., Jow, T. R. and Ding, M. S. (2001). Hybrid power sources for pulsed current applications. IEEE Trans. Aerospace and Electronic Systems 37, 1, 288–292.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolan Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Z., Yan, Z., Wu, X. et al. H Control for Battery/Supercapacitor Hybrid Energy Storage System Used in Electric Vehicles. Int.J Automot. Technol. 20, 1287–1296 (2019). https://doi.org/10.1007/s12239-019-0120-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-019-0120-x

Keywords

Navigation