Thermo-Mechanical Coupled Analysis of Hot Press Forming with 22MnB5 Steel

Abstract

This paper mainly concerns the thermo-mechanical analysis to evaluate the process parameters in the hot press forming with the 22MnB5 sheet such as the austenitization temperature, transport and quenching time for enhancing the efficiency in the production cycle. It is noted that the transport time is most influencing process parameter in the hot press forming to increase production efficiency without sacrificing the strength of the final product. In addition, we newly proposed a scheme to reproduce the flow curves of the hot stamped 22MnB5 sheet with respect to the martensite fraction by correlating the numerical analyses and tensile test results. To take into consideration of the strength variation in the hot stamped door impact beam, entire part is partitioned into several domains on which adaptive flow curves are assigned with respect to the martensite fraction. It demonstrates a good agreement with experimental 3-point bending test with the hot stamped door impact beam when applying the proposed method adopting adaptive flow curves with respect to the martensite fraction.

This is a preview of subscription content, log in to check access.

References

  1. AutoFormplusR7 (2016). 0.2 Software Manual.

  2. Bok, H. H., Kim, S. N., Suh, D. W., Barlat, F. and Lee, M. G. (2015). Non-isothermal kinetics model to predict accurate phase transformation and hardness of 22MnB5 boron steel. Materials Science and Engineering: A, 626, 67–73.

    Article  Google Scholar 

  3. Barcellona, A. and Palmeri, D. (2009). Effect of plastic hot deformation on the hardness and continuous cooling transformations of 22MnB5 microalloyed boron steel. Metallurgical and Materials Trans. A 40, 5, 1160–1174.

    Article  Google Scholar 

  4. Bardelcik, A., Worswick, M. J., Winkler, S. and Wells, M. A. (2012). A strain rate sensitive constitutive model for quenched boron steel with tailored properties. Int. J. Impact Engineering, 50, 49–62.

    Article  Google Scholar 

  5. Cai, J. (2011). Modelling of Phase Transformation in Hot Stamping of Boron Steel. Ph. D. Dissertation. Imperial College London. London, UK.

    Google Scholar 

  6. Caron, E. J., Daun, K. J. and Wells, M. A. (2014). Experimental heat transfer coefficient measurements during hot forming die quenching of boron steel at high temperatures. Int. J. Heat and Mass Transfer, 71, 396–404.

    Article  Google Scholar 

  7. Cui, J., Sun, G., Xu, J., Huang, X. and Li, G. (2015). A method to evaluate the formability of high-strength steel in hot stamping. Materials & Design, 77, 95–109.

    Article  Google Scholar 

  8. Cui, J., Lei, C., Xing, Z. and Li, C. (2012). Microstructure distribution and mechanical properties prediction of boron alloy during hot forming using FE simulation. Materials Science and Engineering: A, 535, 241–251.

    Article  Google Scholar 

  9. Choi, W. S. and De Cooman, B. C. (2014). Characterization of the bendability of press-hardened 22MnB5 steel. Steel Research Int. 85, 5, 824–835.

    Article  Google Scholar 

  10. Denis, S., Gautier, E., Simon, A. and Beck, G. (1985). Stress phase transformation interactions-basic principles, modelling, and calculation of internal stresses. Materials Science and Technology 1, 10, 805–814.

    Article  Google Scholar 

  11. Escher, C. and Wilzer, J. (2015). Tool steels for hot stamping of high strength automotive body parts. Int. Conf. Stone and Concrete Machining (ICSCM), Bochum, Germany, 219–228.

    Google Scholar 

  12. Fan, D. W., Park, R. B., Cho, Y. R. and De Cooman, B. C. (2010). Influence of isothermal deformation conditions on the mechanical properties of 22MnB5 HPF steel. Steel Research Int. 81, 4, 292–298.

    Article  Google Scholar 

  13. Han, X., Zhong, Y., Xin, P., Cui, Z. and Chen, J. (2017). Research on one-step quenching and partitioning treatment and its application in hot stamping process. Proc. Institution of Mechanical Engineers, Part B: J. Engineering Manufacture 231, 11, 1972–1982.

    Article  Google Scholar 

  14. Jha, G., Das, S., Sinha, S., Lodh, A. and Haldar, A. (2013). Design and development of precipitate strengthened advanced high strength steel for automotive application. Materials Science and Engineering: A, 561, 394–402.

    Article  Google Scholar 

  15. Koistinen, D. P. (1959). A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and carbon steels. Acta Metallurgica 7, 1, 59–60.

    Article  Google Scholar 

  16. Kim, D. Y., Kim, H. Y., Lee, S. H. and Kim, H. K. (2015). Life estimation of hot press forming die by using interface heat transfer coefficient obtained from inverse analysis. Int. J. Automotive Technology 16, 2, 285–292.

    Article  Google Scholar 

  17. Kuziak, R., Kawalla, R. and Waengler, S. (2008). Advanced high strength steels for automotive industry. Archives of Civil and Mechanical Engineering 8, 2, 103–117.

    Article  Google Scholar 

  18. Karbasian, H. and Tekkaya, A. E. (2010). A review on hot stamping. J. Materials Processing Technology 210, 15, 2103–2118.

    Article  Google Scholar 

  19. Liu, H. S., Xing, Z. W., Bao, J. and Song, B. Y. (2010). Investigation of the hot-stamping process for advanced high-strength steel sheet by numerical simulation. J. Materials Engineering and Performance 19, 3, 325–334.

    Article  Google Scholar 

  20. Lim, W. S., Choi, H. S., Ahn, S. Y. and Kim, B. M. (2014). Cooling channel design of hot stamping tools for uniform high-strength components in hot stamping process. Int. J. Advanced Manufacturing Technology 70, 5–8, 1189–1203.

    Article  Google Scholar 

  21. Li, N., Lin, J., Balint, D. S. and Dean, T. A. (2016). Experimental characterization of the effects of thermal conditions on austenite formation for hot press forming of boron steel. J. Materials Processing Technology, 231, 254–264.

    Article  Google Scholar 

  22. Mori, K., Bariani, P. F., Behrens, B. A., Brosius, A., Bruschi, S., Maeno, T., Merklein, M. and Yanagimoto, J. (2017). Hot stamping of ultra-high strength steel parts. CIRP Annals 66, 2, 755–777.

    Article  Google Scholar 

  23. Merklein, M. and Lechler, J. (2006). Investigation of the thermo-mechanical properties of hot stamping steels. J. Materials Processing Technology 177, 1–3, 452–455.

    Article  Google Scholar 

  24. Merklein, M., Wieland, M., Lechner, M., Bruschi, S. and Ghiotti, A. (2016). Hot stamping of boron steel sheets with tailored properties: A review. J. Materials Processing Technology, 228, 11–24.

    Article  Google Scholar 

  25. Min, J., Lin, J. and Min, Y. A. (2013). Effect of thermo-mechanical process on the microstructure and secondary-deformation behavior of 22MnB5 steels. J. Materials Processing Technology 213, 6, 818–825.

    Article  Google Scholar 

  26. Nikravesh, M., Naderi, M. and Akbari, G. H. (2012). Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel. Materials Science and Engineering: A, 540, 24–29.

    Article  Google Scholar 

  27. Omer, K., Kortenaar, L. T., Butcher, C., Worswick, M., Malcolm, S. and Detwiler, D. (2017). Testing of a hot stamped axial crush member with tailored properties — Experiments and models. Int. J. Impact Engineering, 103, 12–28.

    Article  Google Scholar 

  28. Schicchi, D. S. and Hunkel, M. (2016). Transformation plasticity and kinetic during bainite transformation on a 22MnB5 steel grade. Materwiss Werksttech 47, 8, 771–779.

    Article  Google Scholar 

  29. Shapiro, A. B. (2009). Using LS-Dyna for hot stamping. Proc. 7th European LS-DYNA Users Conf., Salzburg, Austria, 1–9.

    Google Scholar 

  30. Taylor, T. and Clough, A. (2018). Critical review of automotive hot-stamped sheet steel from an industrial perspective. Materials Science and Technology 34, 7, 809–861.

    Article  Google Scholar 

  31. Tekkaya, A. E., Karbasian, H., Homberg, W. and Kleiner, M. (2007). Thermo-mechanical coupled simulation of hot stamping components for process design. Production Engineering 1, 1, 85–89.

    Article  Google Scholar 

  32. Valls, I., Casas, B., Rodríguez, N. and Paar, U. (2010). Benefits from using high thermal conductivity tool steels in the hot forming of steels. La Metallurgia Italiana, 11–12, 23–28.

    Google Scholar 

  33. Wang, W., Zhang, L., Guo, M., Huang, L. and Wei, X. (2016). Non-isothermal deformation behavior and FE simulation of ultrahigh strength BR1500HS steel in hot press forming process. Int. J. Advanced Manufacturing Technology 87, 9–12, 2951–2965.

    Article  Google Scholar 

  34. Won, C., Lee, S., Seo, J., Park, S. H. and Yoon, J. (2018). Stripping failure of punching pin in GPa-grade steels. Int. J. Advanced Manufacturing Technology 94, 1–4, 73–83.

    Article  Google Scholar 

  35. Zhao, K., Chang, Y., Hu, P. and Wu, Y. (2016). Influence of rapid cooling pretreatment on microstructure and mechanical property of hot stamped AHSS part. J. Materials Processing Technology, 228, 68–75.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (2016R1C1B1006875). This work was also supported by the “Human Resources Program in Energy Technology” of the Korean Institute of Energy Technology Evaluation and Planning (KETEP), granted by the Ministry of Trade, Industry & Energy, Republic of Korea (no. 20174010201310).

The authors declare that they have no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonghun Yoon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, Hg., Won, C., Choi, S. et al. Thermo-Mechanical Coupled Analysis of Hot Press Forming with 22MnB5 Steel. Int.J Automot. Technol. 20, 813–825 (2019). https://doi.org/10.1007/s12239-019-0076-x

Download citation

Key Words

  • Hot press forming
  • Coupled analysis
  • Martensite
  • 22MnB5
  • 3-point bending