International Journal of Automotive Technology

, Volume 19, Issue 5, pp 869–878 | Cite as

Range Extender Module Transmission Topology Study

  • Konrad Herold
  • Marius Böhmer
  • Rene Savelsberg
  • Alexander Müller
  • Jan Schröter
  • Jan Karthaus
  • Un-Jae Seo
  • Georg Jacbos
  • Kay Hameyer
  • Jakob AndertEmail author


Range extender modules are one option to compensate for short drive ranges of electric vehicles. The close interaction of combustion engine and generator poses new challenges in development. A key requirement for range extender systems is to be light and virtually imperceptible in operation. High-speed electrical machines aim at increasing power density. However, their introduction in a range extender requires a gearbox. The combustion engine torque fluctuations can lead to rattle in the gearbox. The rattle can be overcome by a dual mass flywheel. An interdisciplinary model is developed and used to analyse three different range extender systems: one with a low speed generator without gearbox, one with a high-speed generator, and one with a high-speed generator and a dual mass flywheel. The efficiency was found to be higher for the system with a low speed generator, whereas the power density and the costs are beneficial for the high-speed concept. A dual mass flywheel eliminates the changes of torque direction in the gearbox. It reduces the speed fluctuations of the gearbox and generator by over 90 % compared to the low speed setup. But it increases rolling moment and subsequently chassis excitation compared to a setup with only a gearbox.

Key words

Range extender Electric generator Combustion engine Gearbox Dual mass flywheel Speed fluctuations Efficiency NVH 




spring constant, Nm/rad


damping constant, Nm/rad/s


current, A


mass inertia, kg/m2


inductance, H


rotational speed, 1/min


power, W


number of pole pairs, 1


radius, m


resistance, Ω


torque, Nm


voltage, V


velocity, m/s


phase angle, rad


density, kg/m3


stress, N/m2


time constant, s


magnetic flux linkage, Vs


angle, rad


angular velocity, rad/s



primary/secondary side

a, b, c

phase quantities in the three phase system




combustion duration


combustion start


direct axis


dual mass flywheel




permanent magnet excitation


gear box


current control loop


Internal combustion engine


maximum value


nominal value




stator domain


connecting rod






permanent magnet synchronous machine


quadrature axis




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andert, J., Herold, K., Savelsberg, R. and Pischinger, M. (2017). NVH optimization of range extender engines by electric torque profile shaping. IEEE Trans. Control Systems Technology 25, 4, 1465–1472.CrossRefGoogle Scholar
  2. Andert, J., Köhler, E., Niehues, J. and Schürmann, G. (2012). KSPG range extender–A new pathfinder to electromobility. ATZautotechnology 12, 2, 26–33.CrossRefGoogle Scholar
  3. Bassett, M., Hall, J., Cains, T. and Warth, M. (2012). Fahrzeugintegration eines range-extender-antriebs. Motortechnische Zeitschrift 73, 11, 852–856.CrossRefGoogle Scholar
  4. Bianchi, N., Bolognani, S. and Luise, F. (2003). Potentials and limits of high speed PMmotors. Proc. IEEE Conf. 38th IAS Annual Meeting, Industry Applications Conf., Salt Lake City, Utah, USA.Google Scholar
  5. Borisavljevic, A., Polinder, H. and Ferreira, J. A. (2010). On the speed limits of permanent-magnet machines. IEEE Trans. Industrial Electronics 57, 1, 220–227.CrossRefGoogle Scholar
  6. Eberle, U. (2012). Chancen und herausforderungen der elektromobilität. 4th VDI Fachkongress Elektromobilität, Nürtingen, Germany.Google Scholar
  7. Finken, T., Hombitzer, M. and Hameyer, K. (2010). Study and comparison of several permanent-magnet excited rotor types regarding their applicability in electric vehicles. Proc. IEEE Emobility - Electrical Power Train, Leipzig, Germany.Google Scholar
  8. Fischer, R., Fraidl, G. K., Hubmann, C., Kapus, P. E., Kunzemann, R., Sifferlinger, B. and Beste, F. (2009). Range-extender-modul: Wegbereiter für elektrische mobilität. MTZ - Motortechnische Zeitschrift 70, 10, 752–759.CrossRefGoogle Scholar
  9. Gebrehiwot, M. and van den Bossche, A. (2015). Starting requirements of a range extender for electric vehicles: Based on a small size 4-stroke engine. Int. J. Automotive Technology 16, 4, 707–713.CrossRefGoogle Scholar
  10. Grosse, T., Hameyer, K. and Hagedorn, J. (2014). Needle winding technology for symmetric distributed windings. Proc. Conf. 4th Int. Electric Drives Production, Nuremberg, Germany.Google Scholar
  11. Heron, A. and Rinderknecht, F. (2013). Comparison of range extender technologies for battery electric vehicles. Proc. IEEE 8th Int. Conf. and Exhibition Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco.Google Scholar
  12. Herrmann, M. and Matthé, R. (2014). Wege in die Elektromobilität–Empfehlungen aus Erfahrungen. EMotive: 6. Expertenforum Elektrische Fahrzeugantriebe, Wolfsburg, Germany.Google Scholar
  13. Karthaus, J., Steentjes, S., Gröbel, D., Andreas, K., Merklein, M. and Hameyer, K. (2017). Influence of the mechanical fatigue progress on the magnetic properties of electrical steel sheets. Archives of Electrical Engineering 66, 2, 351–360.CrossRefGoogle Scholar
  14. Köhler, J., Esch, H.-J., Niehues, J., Andert, J., Pischinger, M. and Schürmann, G. (2012). Engine test bench and vehicle testing of KSPG range extender “FEVcom” full engine vibration compensation. 21st Aachen Colloquium Automobile and Engine Technology, Aachen, Germany.Google Scholar
  15. Liu, Q. and Hameyer, K. (2016). A deep field weakening control for the PMSM applying a modified overmodulation strategy. Proc. IEEE Conf. 8th IET Int. Conf. Power Electronics, Machines and Drives (PEMD 2016), Glasgow, UK.Google Scholar
  16. Pischinger, M. and Andert, J. (2014). Generator Control System for Smooth Operation with Combusion Engine. Patent No. US 2014/0167423 A1.Google Scholar
  17. Pischinger, R., Klell, M. and Sams, T. (2009). Thermodynamik der Verbrennungskraftmaschine. Der Fahrzeugantrieb. 3rd edn. Springer. Wien, Austria.Google Scholar
  18. Reik, W., Seebacher, R. and Kooy, A. (1998). Dual mass flywheel. 6th Luk Symp., 69–94.Google Scholar
  19. Schröder, D. (2015). Elektrische Antriebe–Regelung von Antriebssystemen. 4th edn. Spriger-Verlag Berlin Heidelberg. Heidelberg, Germany.CrossRefGoogle Scholar
  20. Schröter, J., Hoffmann, M., Jacobs, G. and Straßburger, F. (2015). High speed electrical drives for mobile machinery: An approach for raising the efficiency of agriculture and construction machinery. VDI-Berichte 2251, Düsseldorf, Germany, 71–76.Google Scholar
  21. Schröter, J. and Jacobs, G. (2014). High speed electrical drives for mobile machinery–Drive concept and selected components. Proc. Conf. 13th Int. CTI Symp. Automotive Transmissions, HEV and EVDrives, Berlin, Germany.Google Scholar
  22. Schröter, J., Jacobs, G., Zhitkova, S., Felden, M. and Hameyer, K. (2014). Development of high speed electrical drives for mobile machinery, challenges and potential solutions, challenges and potential solutions. Proc. Conf. 9th Int. Fluid Power Conf., Aachen, Germany.Google Scholar
  23. Stier, C., Geier, M. and Albers, A. (2009). Analyse des drehzahleinflusses auf das dynamische übertragungsverhalten von ZMS. Dynamisches Gesamtsystemverhalten von Fahrzeugantrieben, Munich, Germany.Google Scholar
  24. van Basshuysen, R. and Schäfer, F. (2015). Handbuch Verbrennungsmotor: Grundlagen, Komponenten, Systeme, Perspektiven. ATZ/MTZ-Fachbuch. 7th edn. Springer Vieweg. Wiesbaden, Germany.Google Scholar
  25. Vibe, I. I. (1970). Brennverlauf und Kreisprozess von Verbrennungsmotoren. VEB Verlag Technik. Berlin, Germany.Google Scholar
  26. Walter, A., Kiencke, U., Jones, S. and Winkler, T. (2007). Das zweimassenschwungrad als virtueller sensor: Echtzeitfähige rekonstruktion des direkt indizierten motor- und lastmoments. Motortechnische Zeitschrift 68, 6, 486–493.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Automotive Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Konrad Herold
    • 1
  • Marius Böhmer
    • 1
  • Rene Savelsberg
    • 1
  • Alexander Müller
    • 1
  • Jan Schröter
    • 2
  • Jan Karthaus
    • 3
  • Un-Jae Seo
    • 3
  • Georg Jacbos
    • 2
  • Kay Hameyer
    • 3
  • Jakob Andert
    • 4
    Email author
  1. 1.Institute for Combustion Engines (VKA)RWTH Aachen UniversityAachenGermany
  2. 2.Institute for Machine Elements and Machine Design (IME)RWTH Aachen UniversityAachenGermany
  3. 3.Institute of Electrical Machines (IEM)RWTH Aachen UniversityAachenGermany
  4. 4.Mechatronic Systems for Combustion Engines (MSCE)RWTH Aachen UniversityAachenGermany

Personalised recommendations