Skip to main content
Log in

Investigation of Occupant Lower Extremity Injures under Various Overlap Frontal Crashes

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

Objective

With widely usage of restraint system, fatal injuries to occupants have been largely limited while non-fatal lower extremity injuries have not been effectively improved. The present study aims to investigate occupant lower extremity injuries under realistic impact environments.

Methods

A biofidelic lower extremity model, a dummy model and a car cab model were combined to set up a realistic impact environment. Three typical frontal impact groups were simulated. Occupant global lower kinematics, long bone axial force and bending moment were presented to in-depth investigate lower extremity injury mechanism and tolerance.

Results

Various overlap frontal impacts cause totally different lower extremity kinematics in the combination of structural invasion and restraint system effects. The femur fracture occurred at a small axial force of 7.57 kN combing a substantial bending moment peak of 172 Nm. Ankle joint injuries were found in 100 % and 25 % overlap impacts that present large tibial axial force and joint rotation angle.

Conclusions

Overall results indicate that a coupling threshold of femur axial force and bending moment is of rationality to predict global femur fracture. The ankle joint injury occurrence is significantly related to the coupling effects of tibia axial force and excessive self-kinematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, A. E., Peters, C. L., Tuttle, B. D. and Weiss, J. A. (2005). Subject-specific finite element model of the pelvis: Development, validation and sensitivity studies. J. Biomechanical Engineering 127, 3, 364–373.

    Article  Google Scholar 

  • Andrew, K., Mcnally, C., Kennedy, E., Kemper, A., McNally, C., Kennedy, E., Manoogian, S. and Duma, S. (2007). The material properties of human tibia cortical bone in tension and compression: Implications for the tibia index. 20th Int. Technical Conf. Enhanced Safety of Vehicles Conf. (ESV), Lyon, France.

    Google Scholar 

  • Austin, R. A. (2012). Lower Extremity Injuries and Intrusion in Frontal Crashes. Report No. DOT HS 811 578. Washington, DC: National Highway Traffic Safety Administration.

    Google Scholar 

  • Balasubramanian, S., Beillas, P., Belwadi, A. and Hardy, W. N. (2004). Below knee impact responses using cadaveric specimens. Stapp Car Crash Journal, 48, 71–88.

    Google Scholar 

  • Beillas, P., Begeman, P. C., Yang, K. H., King, A. I., Arnoux, P. J., Kang, H. S., Kayvantash, K., Brunet, C., Cavallero, C. and Prasad, P. (2001). Lower extremity: Advanced FE model and new experimental data. Stapp Car Crash Journal, 45, 469–494.

    Google Scholar 

  • Butler, D. L., Kay, M. D. and Stouffer, D. C. (1986). Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. J. Biomechanics 19, 6, 425–432.

    Article  Google Scholar 

  • Chang, C. Y., Rupp, J. D., Kikuchi, N. and Schneider, L. W. (2008). Development of a finite element model to study the effects of muscle forces on knee-thigh-hip injuries in frontal crashes. Stapp Car Crash Journal, 52, 475–504.

    Google Scholar 

  • Chang, C. Y., Rupp, J. D., Reed, M. P., Hughes, R. E. and Schneider, L. W. (2009). Predicting the effects of muscle activation on knee, thigh, and hip injuries in frontal crashes using a finite-element model with muscle forces from subject testing and musculoskeletal modeling. Stapp Car Crash Journal, 53, 291–328.

    Google Scholar 

  • Chong, M., Sochor, M., Ipaktchi, K., Brede, C., Poster, C. and Wang, S. (2007). The interaction of ‘occupant factors’ on the lower extremity fractures in frontal collision of motor vehicle crashes based on a level I trauma center. J. Trauma. 62, 3, 720–729.

    Article  Google Scholar 

  • Dakin, G. J., Arbelaez, R. A., Molz, F. J., Alonso, J. E., Mann, K. A. and Eberhardt, A. W. (2001). Elastic and viscoelastic properties of the human pubic symphysis joint: Effects of lateral impact loading. J. Biomechanical Engineering, 123, 218–226.

    Article  Google Scholar 

  • Fithian, D. C., Kelly, M. A. and Mow, V. C. (1990). Material properties and structure-function relationships in the menisci. Clinical Orthopaedics & Related Research, 252, 19–31.

    Google Scholar 

  • Funk, J. R., Kerrigan, J. R. and Crandall, J. R. (2004). Dynamic bending tolerance and elastic plastic material properties of the human femur. 48th Annual Proc. Association for the Advancement of Automotive Medicine, 48, 215–233.

    Google Scholar 

  • Guillemot, H., Besnault, B., Robin, S., Got, C., Le Coz, J. Y., Lavaste, F. and Lassau, J. P. (1997). Pelvic injuries in side impact collisions: A field accident analysis and dynamic tests on isolated pelvic bones. SAE Paper No. 973322.

    Google Scholar 

  • Hayashi, S., Choi, H. Y., Levine, R. S., Yang, K. H. and King, A. I. (1996). Experimental and analytical study of knee fracture mechanisms in a frontal knee impact. SAE Paper No. 962423.

    Google Scholar 

  • Hewitt, J., Guilak, F., Richard, G. and Vail, T. P. (2001). Regional material properties of the human hip joint capsule ligaments. J. Orthopaedic Research 19, 3, 359–364.

    Article  Google Scholar 

  • Hu, J. and Rupp, J. D. (2010). Computational investigation of the effects of occupant and vehicle Interior factors on the risk of knee-thigh-hip injuries in frontal crashes. SAE Paper No. 2010-01-1023.

    Google Scholar 

  • Huelke, D. F., Day, J. O. and States, J. D. (1982). Lower extremity injuries in automobile crashes. Accident Analysis and Prevention 14, 2, 95–106.

    Article  Google Scholar 

  • Ivasson, B. J., Genovese, D., Crandall, J. R., Bolton, J. R., Untaroiu, C. D. and Bose, D. (2009). The tolerance of the femoral shaft in combined axial compression and bending loading. Stapp Car Crash Journal, 53, 251–290.

    Google Scholar 

  • Jiang, X. Q., Yang, J. K., Wang, B. Y. and Zhang, W. G. (2014). An investigation of biomechanical mechanisms of occupant femur injuries under compression-bending load. Chinese J. Theoretical and Applied Mechanics 46, 3, 465–474.

    Google Scholar 

  • Jiang, X. Q. (2014). A Study on the Biomechanical of Occupant Lower Extremity Injuries in Car Frontal Impact Based on Human Body Model. Ph. D. Dissertation. Hunan University. Changsha, China.

    Google Scholar 

  • Keyak, J. H., Rossi, S. A. and Jones, K. A. (1998). Prediction of femoral fracture load using automated finite element modeling. J. Biomechanics 31, 2, 125–133.

    Article  Google Scholar 

  • Kim, Y. S., Choi, H. H., Cho, Y. N., Park, Y. J., Lee, J. B., Yang, K. H. and King, A. I. (2005). Numerical investigations of interactions between the knee-thigh-hip complex with Vehicle Interior Structures. Stapp Car Crash Journal, 49, 85–115.

    Google Scholar 

  • Kuppa, S. and Fessahaie, O. (2003). An overview of knee-thigh-hip injuries in frontal crashes in the United States. 18th Int. Technical Conf. Enhanced Safety of Vehicles (ESV), Nagoya, Japan.

    Google Scholar 

  • Kuppa, S., Wang, J. and Haffner, M. (2001). Lower extremity injuries and associated injury criteria. 17th Int. Technical Conf. Enhanced Safety of Vehicles (ESV), Amsterdam, the Netherlands.

    Google Scholar 

  • Laituri, T. R., Henry, S., Sullivan, K. and Prasad, P. (2006). Derivation and theoretical assessment of a set of biomechanics-based AIS2+ risk equations for the knee-thigh-hip complex. Stapp Car Crash Journal, 50, 97–130.

    Google Scholar 

  • Lee, J., Conroy, C., Coimbra, R., Tominaga, G. T. and Hoyt, D. B. (2010). Injury patterns in frontal crashes: the association between knee-thigh-hip (KTH) and serious intra-abdominal injury. Accident Analysis & Prevention 42, 1, 50–55.

    Article  Google Scholar 

  • Linde, F., Hvid, I. and Pongsoipetch, B. (1989). Energy absorptive properties of human trabecular bone specimens during axial compression. J. Orthopaedic Research 7, 3, 432–439.

    Article  Google Scholar 

  • Martens, M., Van Audekercke, R., Delport, P., De Meester, P. and Mulier, J. C. (1983). The mechanical characteristics of cancellous bone at the upper femoral region. J. Biomechanics 16, 12, 971–983.

    Article  Google Scholar 

  • Melvin, J. W., Richard, L. S., Alem, N. M., Benson, J. B. and Mohan, D. (1975). Impact response and tolerance of the lower extremities. 19th Stapp Car Crash Conf., Paper No. 751159, Detroit, Michigan, USA.

    Google Scholar 

  • Mo, F., Arnoux, P. J., Jure, J. J. and Masson, C. (2012). Injury tolerance of tibia for the car-pedestrian impact. Accident Analysis & Prevention, 46, 18–25.

    Article  Google Scholar 

  • Mo, F., Masson, C., Cesari, D. and Arnoux, P. J. (2013). Coupling lateral bending and shearing mechanisms to define knee injury criteria for pedestrian safety. Traffic Injury Prevention 14, 4, 378–386.

    Article  Google Scholar 

  • Mo, F., Arnoux, P. J., Cesari, D. and Masson, C. (2012). The failure modelling of knee ligaments in the finite element model. Int. J. Crashworthiness 17, 6, 630–636.

    Article  Google Scholar 

  • Nahum, A. M. and Melvin, J. W. (2002). Accidental Injury: Biomechanics and Prevention. Springer. New York, 206–227.

    Book  Google Scholar 

  • Powell, W., Ojala, S., Advani, S. and Martin, R. (1975). Cadaver femur responses to longitudinal impacts. 19th Stapp Car Crash Conf., Paper No. 751160, Detroit, Michigan, USA.

    Google Scholar 

  • Puso, M. A. and Weiss, J. A. (1998). Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J. Biomechanical Engineering, 120, 62–70.

    Article  Google Scholar 

  • Quapp, K. M. and Weiss, J. A. (1998). Material characterization of human medial collateral ligament. J. Biomechanical Engineering, 120, 757–762.

    Article  Google Scholar 

  • Read, K. M., Burgess, A. R., Dischinger, P. C., Kufera, J. A., Kerns, T. J., Ho, S. M. and Burch, C. (2002). Psychosocial and physical factors associated with lower extremity injury. Annual Proc. Association for the Advancement of Automotive Medicine, 46, 289–303.

    Google Scholar 

  • Repo, R. U. and Finlay, J. B. (1977). Survival of articular cartilage after controlled impact. J. Bone and Joint Surgery 59, 8, 1068–1076.

    Article  Google Scholar 

  • Rupp, J. D. (2006). Biomechanics of Hip Fractures in Frontal Motor-vehicle Crashes. Ph. D. Dissertation. The University of Michigan. Ann Arbor, Michigan, USA.

    Google Scholar 

  • Rupp, J. D., Miller, C. S., Reed, M. P., Madura, N. H., Klinich, K. D. and Schneider, L. W. (2008). Characterization of knee-thigh-hip response in frontal impacts using biomechanical testing and computational simulations. Stapp Car Crash Journal, 52, 421–474.

    Google Scholar 

  • Rupp, J. D., Reed, M. P., Jeffreys, T. A. and Schneider, L. W. (2003). Effects of hip posture on the frontal impact tolerance of the human hip joint. Stapp Car Crash Journal, 47, 21–33.

    Google Scholar 

  • Rupp, J. D., Reed, M. P., Van Ee, C. A., Kuppa, S., Wang, S. C., Goulet, J. A. and Schneider, L. W. (2002). The tolerance of the human hip to dynamic knee loading. Stapp Car Crash Journal, 46, 211–228.

    Google Scholar 

  • Rupp, J. D. and Schneider, L. W. (2004). Injuries to the hip joint in frontal motor-vehicle crashes: Biomechanical and real-world perspectives. Orthopedic Clinics of North America 35, 4, 493–504.

    Article  Google Scholar 

  • Schmitt, K. U., Niederer, P., Muser, M. and Walz, F. (2010). Trauma Biomechanics. Spriger-Verlag Berlin Heidelberg. Heidelberg, Germany.

    Book  Google Scholar 

  • Takahashi, Y., Kikuchi, Y., Konosu, A. and Ishikawa, H. (2000). Development and validation of the finite element model for the human lower extremity of pedestrians. Stapp Car Crash Journal, 44, 335–355.

    Google Scholar 

  • Traffic Management Bureau of Ministry of Public Security (2001–2013). Annual Report of the People’s Republic of China on Road Traffic Accident Statistics (2000–2012). Beijing, China.

    Google Scholar 

  • Untaroiu, C., Yue, N. and Shin, J. (2013). A finite element model of the lower extremity for simulating automotive impacts. Annals of Biomedical Engineering 41, 3, 513–526.

    Article  Google Scholar 

  • Untaroiu, C. D. (2010). A numerical investigation of midfemoral injury tolerance in axial compression and bending loading. Int. J. Crashworthiness 15, 1, 83–92.

    Article  Google Scholar 

  • Untaroiu, C., Darvish, K., Crandall, J., Deng, B. and Jenne-Tai, W. (2005). A finite element model of the lower extremity for simulating pedestrian impacts. Stapp Car Crash Journal, 49, 157–181.

    Google Scholar 

  • Viano, D. C. (1986). Biomechanics of bone and tissue: A review of material properties and failure characteristics. SAE Paper No. 861923.

    Google Scholar 

  • Viano, D. C. and Stalnaker, R. L. (1980). Mechanisms of femoral fractures. J. Biomechanics 13, 8, 701–715.

    Article  Google Scholar 

  • Ward, E., Pattimore, D., Thomas, P. and Bradford, M. (1991). Leg injuries in car accidents — Are we doing enough?. IRCOBI, Berlin, German.

    Google Scholar 

  • Wheeler, L., Manning, P., Owen, C., Roberts, A., Lowne, R. and Wallace, W. A. (2000). Biofidelity of dummy legs for use in legislative car crash testing. Int. Vehicle Safety Conf., London, UK.

    Google Scholar 

  • Yamada, H. (1970). Strength of Biological Materials. Springer. Baltimore, Maryland, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, F., Duan, S., Jiang, X. et al. Investigation of Occupant Lower Extremity Injures under Various Overlap Frontal Crashes. Int.J Automot. Technol. 19, 301–312 (2018). https://doi.org/10.1007/s12239-018-0029-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-018-0029-9

Key Words

Navigation