Skip to main content
Log in

Experimental and 3D, embedded modeling for diesel engine SCR deposit

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

Nowadays, the selective catalytic reduction (SCR) is a promising solution to fulfill stringent nitrogen oxide (NOX) emission standards enforced by worldwide regulation bodies for lean burning engines. However, in the practical operation, urea deposits occur under unfavorable conditions, which bring about a failure of urea dosing strategy, affect the SCR system de-NOx performance and lowering the fuel economy by increasing the engine back pressure. This paper will present 3D deposit model, which can be used to predict the deposit position. Furthermore, a model-based controls strategy and calibration are designed. The comparison test results of both engine emission tests and vehicle field tests shows there is significant deposits improvement with the embedded model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SCR:

selected catalyst reduction

NOx :

nitrogen oxide

Adblue:

32.5 % urea solution

SV:

space velocity

CYA:

cyanuric acid

NSR:

NH3/NOX ratio

DCU:

dosing control unit

ETC:

european transient cycle

F idr :

drag force

F ip :

pressure force

A:

frequency factor

D d :

droplet diameter

E a :

activation energy

R:

universal gas constant

Red :

reynolds number

c HCNO :

concentration of HCNO

Area filmpatch :

film patch area

St :

stanton number

m Deposit :

mass of deposits

m f,lowTemp :

mass of wallfilm with low temperature

w urea :

urea mass fraction in the wallfilm

w miler :

limitation of Miller curve.

m Inj :

mass of the injected Adblue

x stored :

percentage of injected Adblue to wallfilm

m evap :

the mass of evaporated water

m de :

urea mass which involved in themolysis reaction

Pf :

wallfilm density

Vf :

the wallfilm volume

Af :

the wallfilm area

K:

heat transfer coefficient.

c p,f :

wallfilm specific heat

References

  • Bernhard, A. M., Peitz, D., Elsener, M., Wokaun, A. and Kröcher, O. (2012). Hydrolysis and thermolysis of urea and its decomposition byproducts biuret, cyanuric acid and melamine over anatase TiO2. Applied Catalysis B: Environmental, 115-116, 129–137.

    Article  Google Scholar 

  • Birkhold, F., Meingast, U., Wassermann, P. and Deutschmann, O. (2006). Analysis of the injection of urea-water-solution for automotive SCR DeNOxsystems: Modeling of two-phase flow and spray/wallinteraction. SAE Paper No. 2006-01-0643.

    Google Scholar 

  • Birkhold, F., Meingast, U., Wassermann, P. and Deutschmann, O. (2007). Modeling and simulation of the injection of urea-water-solution for automotive SCR DeNO x-systems. Applied Catalysis B: Environmental 70, 1–4, 119–127.

    Article  Google Scholar 

  • Cho, Y. S., Lee, S. W., Choi, W. C. and Yoon, Y. B. (2014). Urea-SCR system optimization with various combinations of mixer types and decomposition pipe lengths. Int. J. Automotive Technology 15, 5, 723–731.

    Article  Google Scholar 

  • Fang, H. L. and DaCosta, H. F. (2003). Urea thermolysis and NOx reduction with and without SCR catalysts. Applied Catalysis B: Environmental 46, 1, 17–34.

    Article  Google Scholar 

  • Fischer, S. (2012). Simulation of the Urea-water-solution Preparation and Ammonia-homogenization with a Validated CFD-model for the Optimization of Automotive SCR-systems. Ph. D. Dissertation. Vienna University of Technology. Wien, Austria.

    Google Scholar 

  • Hauck, P., Jentys, A. and Lercher, J. A. (2007). Surface chemistry and kinetics of the hydrolysis of isocyanic acid on anatase. Applied Catalysis B: Environmental 70, 1–4, 91–99.

    Article  Google Scholar 

  • Johnson, T. V. (2009). Review of diesel emissions and control. Int. J. Engine Research 10, 5, 275–285.

    Article  Google Scholar 

  • Kabir, M. N., Alginahi, Y. and Islam, K. (2015). Simulation of oxidation catalyst converter for after-treatment in diesel engines. Int. J. Automotive Technology 16, 2, 193–199.

    Article  Google Scholar 

  • Kim, J. Y., Ryu, S. H. and Ha, J. S. (2004). Numerical prediction on the characteristics of spray-induced mixing and thermal decomposition of urea solution in SCR system. ASME Internal Combustion Engine Division Fall Technical Conf., 165–170.

    Google Scholar 

  • Kontin, S., Höfler, A., Koch, R. and Bauer, H. J. (2010). Heat and mass transfer accompanied by crystallisation of single particles containing urea-water-solution. 23rd Annual Conf. Liquid Atomization and Spray Systems, Brno, Czech Republic.

    Google Scholar 

  • Kuhnke, D. (2004). Spray/Wall Interaction Modelling by Dimensionless Data Analysis. Ph. D. Dissertation. Darmstadt University of Technology. Darmstadt, Germany.

    MATH  Google Scholar 

  • Lü, L. and Wang, L. (2013). Model-based optimization of parameters for a diesel engine SCR system. Int. J. Automotive Technology 14, 1, 13–18.

    Article  Google Scholar 

  • Schaber, P. M., Colson, J., Higgins, S., Thielen, D., Anspach, B. and Brauer, J. (2004). Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochimica Acta 424, 1–2, 131–142.

    Article  Google Scholar 

  • Schadel, S. A. and Hanratty, T. J. (1989). Interpretation of atomization rates of the liquid film in gas-liquid annular flow. Int. J. Multiphase Flow 15, 6, 893–900.

    Article  Google Scholar 

  • Schiller, L. and Naumann, Z. (1935). A drag coefficient correlation. VDI Zeitung 77, 318, 51.

    Google Scholar 

  • Smith, H., Lauer, T., Mayer, M. and Pierson, S. (2014). Optical and numerical investigations on the mechanisms of deposit formation in SCR systems. SAE Int. J. Fuels and Lubricants 7, 2, 525–542.

    Article  Google Scholar 

  • Strots, V. O., Santhanam, S., Adelman, B. J., Griffin, G. A. and Derybowski, E. M. (2010). Deposit formation in urea-SCR systems. SAE Int. J. Fuels and Lubricants 2, 2, 283–289.

    Article  Google Scholar 

  • Tang, T., Zhang, J., Shuai, S. J. and Cao, D. (2014). Urea decomposition at low temperature in SCR systems for diesel engines. SAE Paper No. 2014-01-2808.

    Google Scholar 

  • Way, P., Viswanathan, K., Preethi, P., Gilb, A., Zambon, N. and Blaisdell, J. (2009). SCR performance optimization through advancements in aftertreatment packaging. SAE Paper No. 2009-01-0633.

    Google Scholar 

  • Yih, S. M. (1986). Modeling heat and mass transport in falling liquid films. Handbook of Heat and Mass Transfer, 2, 111–210.

    Google Scholar 

  • Yim, S. D., Kim, S. J., Baik, J. H., Nam, I. S., Mok, Y. S., Lee, J. H. and Oh, S. H. (2004). Decomposition of urea into NH3 for the SCR process. Industrial & Engineering Chemistry Research 43, 16, 4856–4863.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, F., Lü, L., Feng, T. et al. Experimental and 3D, embedded modeling for diesel engine SCR deposit. Int.J Automot. Technol. 18, 219–227 (2017). https://doi.org/10.1007/s12239-017-0021-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-017-0021-9

Key Words

Navigation