Skip to main content

Design factor optimization of 3D flash lidar sensor based on geometrical model for automated vehicle and advanced driver assistance system applications

Abstract

Sensor technologies have been innovated and enhanced rapidly for highly automated vehicle and advanced driver assistance systems (ADAS) in automotive industry; however, in order to adopt sensors into mass production vehicle in near future, various requirements should be satisfied such as cost, durability, and maintainance without any loss of overall performance of the sensors. In this sense, a 3D flash lidar is one of primising range sensors because of no moving parts, compact package, and precise measure for distance by using a laser. In spite of the several advantages, the 3D flash lidar is not commonly used in automotive industry because it is quite expensive for adoption and it is manufactured with only general purpose currently; therefore, the cost reduction and optimal design to satisfy various purposes of ADAS or autonomous driving should be accomplished. In this paper, we propose a novel approach for design factor optimization of the 3D flash lidar based on a geometrical model by using structural similarity between the 3D flash lidar and 2D digital camera. In particular, focal length and area of a receiver (focal plane array and read-out integrated circuit) which directly affect on sensor performance (field of view and maximum detection range) are optimized as the design factors. From the optimization results in simulation, we show that optimal design factors according to various purposes required in ADAS could be easily determined and the sensor performances could be evaluated before manufacturing. It will reduce temporal and economic burdens for design and manufacturing in development process.

This is a preview of subscription content, access via your institution.

References

  1. Almagambetov, A., Velipasalar, S. and Casares, M. (2015). Robust and computationally lightweight autonomous tracking of vehicle taillights and signal detection by embedded smart cameras. IEEE Trans. Industrial Electronics, 3732–3741.

    Google Scholar 

  2. Andersen, J. F., Busck, J. and Helselberg, H. (2006). Applications of high resolution laser radar for 3-D multispectral imaging. Proc. SPIE-The Int. Society for Optical Engineering.

    Google Scholar 

  3. Anderson, D., Herman, H. and Kelly, A. (2005). Experimental characterization of commercial flash ladar devices. Int. Conf. Sensing and Technology.

    Google Scholar 

  4. Asbrock, J., Bailey, S., Baley, D., Boisvert, J., Chapman, G., Crawford, G., De Lyon, T., Drafahl, B., Edwards, J., Herrin, E., Hoyt, C., Jack, M., Kvaas, R., Liu, K., Mckeag, W., Rajavel, R., Randall, V., Rengarajan, S. and Riker, J. (2008). Ultra-high sensitivity APD based 3D LADAR sensors: Linear mode photon counting LADAR camera for the Ultra-Sensitive Detector program. Proc. SPIE-The Int. Society for Optical Engineering.

    Google Scholar 

  5. ASC, I. (2012). Applications of 3D Flash Lidar. http://www.advancedscientificconcepts.com/applications/automotive.htm

    Google Scholar 

  6. Barnard, S. T. and Fischler, M. A. (1982). Computational stereo. ACM Computing Surveys (CSUR) 14, 4, 553–572.

    Article  Google Scholar 

  7. Braid, D., Broggi, A. and Schmiedel, G. (2006). The TerraMax autonomous vehicle concludes the 2005 DARPA grand challenge. Intelligent Vehicles Symp., IEEE, 534–539.

    Chapter  Google Scholar 

  8. Buehler, M., Iagnemma, K. and Singh, S. (2009). The DARPA Urban Challenge: Autonomous Vehicles in City Traffic. Springer-Verlag Berlin Heidelberg.

    Book  Google Scholar 

  9. Busck, J. and Heiselberg, H. (2004). High accuracy 3-D laser radar. Proc. SPIE-The Int. Society for Optical Engineering, 257–263.

    Google Scholar 

  10. Entwistle, M., Itzler, M. A., Chen, J., Owens, M., Patel, K., Jiang, X., Slomkowski, K. and Rangwala, S. (2012). Geiger-mode APD camera system for single-photon 3D LADAR imaging. SPIE Defense, Security, and Sensing, Int. Society for Optics and Photonics, 83750D-83750D-12.

    Google Scholar 

  11. Ford (2011). Ford Active City Stop. NCAP. http://www.euroncap.com/en/ratings-rewards/euro-ncapadvanced-rewards/2011-ford-active-city-stop

    Google Scholar 

  12. Forsyth, D. A. and Ponce, J. (2002). Computer Vision: A Modern Approach. Prentice Hall Professional Technical Reference.

    Google Scholar 

  13. Grasso, R. J., Dippel, G. F. and Russo, L. E. (2006). A model and simulation to predict 3D imaging LAD AR sensor systems performance in “real world” type environments. Proc. SPIE-The Int. Society for Optical Engineering.

    Google Scholar 

  14. Guizzo, E. (2011). How Google’s Self-driving Car Works. IEEE Spectrum Online.

    Google Scholar 

  15. Han, J., Kim, D., Lee, M. and Sunwoo, M. (2012). Enhanced road boundary and obstacle detection using a downward-looking LIDAR sensor. IEEE Trans. Vehicular Technology 61, 3, 971–985.

    Article  Google Scholar 

  16. Jung, H. G., Cho, Y. H., Yoon, P. J. and Kim, J. (2008). Scanning laser radar-based target position designation for parking aid system. IEEE Trans. Intelligent Transportation Systems 9, 3, 406–424.

    Article  Google Scholar 

  17. Ishida, S. and Gayko, J. E. (2004). Development, evaluation and introduction of a lane keeping assistance system. Intelligent Vehicles Symp., IEEE, 943–944.

    Google Scholar 

  18. Itzler, M. A., Entwistle, M., Owens, M., Patel, K., Jiang, X., Slomkowski, K., Rangwala, S., Zalud, P. F., Senko, T., Tower, J. and Ferraro, J. (2010). Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging. Proc. SPIE-The Int. Society for Optical Engineering.

    Google Scholar 

  19. Suhr, J. K. and Jung, H. G. (2014). Sensor fusion-based vacant parking slot detection and tracking. IEEE Trans. Intelligent Transportation Systems 15, 1, 21–36.

    Article  Google Scholar 

  20. Kang, Y., Roh, C., Suh, S.-B. and Song, B. (2012). A lidarbased decision-making method for road boundary detection using multiple kalman filters. IEEE Trans. Industrial Electronics 59, 11, 4360–4368.

    Article  Google Scholar 

  21. Jo, K., Kim, J., Kim, D., Jang, C. and Sunwoo, M. (2014). Development of autonomous car–Part I: Distributed system architecture and development process. IEEE Trans. Industrial Electronics 61, 12, 7131–7140.

    Article  Google Scholar 

  22. Kodaka, K., Otabe, M., Urai, Y. and Koike, H. (2003). Rear-end collision velocity reduction system. SAE Paper No. 2003-01-0503.

    Book  Google Scholar 

  23. Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter, J. Z., Langer, D., Pink, O. and Pratt, V. (2011). Towards fully autonomous driving: Systems and algorithms. Intelligent Vehicles Symp. (IV), IEEE, 163–168.

    Google Scholar 

  24. Levinson, J. and Thrun, S. (2010). Robust vehicle localization in urban environments using probabilistic maps. Robotics and Automation (ICRA), IEEE Int. Conf., 4372–4378.

    Google Scholar 

  25. Louwerse, W. J. R. and Hoogendoorn, S. P. (2004). ADAS safety impacts on rural and urban highways. Intelligent Vehicles Symp., IEEE, 887–890.

    Google Scholar 

  26. Natale, D. J., Tutwiler, R. L., Baran, M. S. and Durkin, J. R. (2010). Using full motion 3D flash LIDAR video for target detection, segmentation, and tracking. Proc. IEEE Southwest Symp. Image Analysis and Interpretation, 21–24.

    Google Scholar 

  27. Oizumi, K., Yamamoto, Y., Sakata, M. and Inoue, M. (2003). Development of “all-around view” system. SAE Paper No. 2003-01-0017.

    Book  Google Scholar 

  28. Pan, H. Y. and Liu, S. A. (2012). A special terrain-following system based on flash LIDAR. IEEE Int. Conf. Mechatronics and Automation, ICMA, 653–657.

    Google Scholar 

  29. Peterson, K., Ziglar, J. and Rybski, P. E. (2008). Fast feature detection and stochastic parameter estimation of road shape using multiple LIDAR. Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ Int. Conf., IEEE, 612–619.

    Chapter  Google Scholar 

  30. Pierrottet, D. F., Amzajerdian, F., Meadows, B. L., Estes, R. and Noe, A. M. (2007). Characterization of 3-D imaging lidar for hazard avoidance and autonomous landing on the moon. Proc. SPIE-The Int. Society for Optical Engineering.

    Google Scholar 

  31. Richmond, R., Stettner, R. and Glessner, J. (2000). Eye safe laser radar focal plane array for three-dimensional imaging. Proc. SPIE-The Int. Society for Optical Engineering, 172–178.

    Google Scholar 

  32. Stettner, R. (2010). Compact 3D flash LIDAR video cameras and applications. Proc. SPIE-The Int. Society for Optical Engineering.

    Google Scholar 

  33. Stettner, R., Bailey, H. and Richmond, R. (2004). Eye-safe laser radar 3-D imaging. Proc. SPIE-The Int. Society for Optical Engineering, 111–116.

    Google Scholar 

  34. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M. and Hoffmann, G. (2006). Stanley: The robot that won the DARPA grand challenge. J. Field Robotics 23, 9, 661–692.

    Article  Google Scholar 

  35. Tsugawa, S. (1994). Vision-based vehicles in Japan: Machine vision systems and driving control systems. IEEE Trans. Industrial Electronics 41, 4, 398–405.

    Article  Google Scholar 

  36. Velodyne, H. (2013). 64E LIDAR. http://velodynelidar.com/ hdl-64e.html

    Google Scholar 

  37. Vislab (2014). 3DV-E System. http://vislab.it/products/3dv-e-system

    Google Scholar 

  38. Volvo (2013). Volvo Trucks European Accident Research and Safety Report. Gothenburg, Sweden.

    Google Scholar 

  39. Wenger, J. (2005). Automotive radar-status and perspectives. Compound Semiconductor Integrated Circuit Symp. CSIC '05., IEEE.

    Google Scholar 

  40. Wang, Y., Nguyen, B. M., Fujimoto, H. and Hori, Y. (2014). Multirate estimation and control of body slip angle for electric vehicles based on onboard vision system. IEEE Trans. Industrial Electronics 61, 2, 1133–1143.

    Article  Google Scholar 

  41. Yuan, P., Sudharsanan, R., Bai, X., Boisvert, J., Mcdonald, P., Labios, E., Salisbury, M. S., Stuart, G. M., Danny, H., Portillo, A. A., Roybal, A. B., Van Duyne, S., Pauls, G. and Gaalema, S. (2010). 32 × 32 Geiger-mode LADAR cameras. Proc. SPIE-The Int. Society for Optical Engineering.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Sunwoo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jang, C.H., Kim, C.S., Jo, K.C. et al. Design factor optimization of 3D flash lidar sensor based on geometrical model for automated vehicle and advanced driver assistance system applications. Int.J Automot. Technol. 18, 147–156 (2017). https://doi.org/10.1007/s12239-017-0015-7

Download citation

Key Words

  • 3D flash lidar
  • Automotive applications
  • Advanced driver assistance system (ADAS)
  • Laser scanner
  • Ranging sensor