Skip to main content
Log in

Knock in dual-fuel diesel combustion with an E85 ethanol/gasoline blend by multi-dimensional simulation

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

In this paper, knocking combustion in dual-fuel diesel engine is modeled and investigated using the CFD code coupled with detailed chemical kinetics. The ethanol/gasoline blend E85 is used as the primary fuel in a dual-fuel combustion concept based on a light-duty diesel engine equipped with a common-rail injection system. The E85 blend is injected and well mixed with intake air in the intake manifold and is ignited by the direct injection diesel fuel. A 46-species, 187-reaction Multicomponent mechanism is adopted to model the auto-ignition process of the E85/air/diesel mixture ahead of the flame front. Based on the model validation, knocking combustion under boost and full load operating condition for 0 %, 20 %, 50 %, as well as 70 % E85 substitute energy is simulated. The effects of E85 substitute rate and two stage injection strategies on knock intensity, power output, as well as location of the auto-ignition initiation is clearly reproduced by the model. The calculation result shows that, for a high E85 rate of 50 % and 70 % with single injection strategies, the most serious knock and the origin of auto-ignition always occurs far away from where the flame of diesel spray is first generated, at the center of combustion chamber, due to higher pressure wave, relatively richer E85 mixture and longer distances of flame propagation. The two stage injection strategies with a small amount of diesel pilot injection ahead of the main injection primarily influence the ignition behavior of the directly injected fuel, leads to a lower pressure rise rate and a reduced propagation distance, both of which contribute to the attenuation of knock intensity for a higher E85 rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABDC:

after bottom-dead center

ATDC:

after top-dead center

BTDC:

before top-dead center

CA:

crank angle

CFD:

computational fluid dynamics

CO:

carbon monoxide

DISI:

direct injection spark-ignition

DF:

dual-fuel

DME:

dimethylether

EGR:

exhaust gas recirculation

ECFM:

extended coherent flamelet model

EVO:

exhaust valve opening

HC:

hydrocarbon

HRR:

heat-release rate

IVC:

intake-valve closing

KI :

knock index

LNG:

liquefied natural gas

MultiChem:

multi-surrogate fuel chemistry

NG:

natural gas

PDF:

probability density function

PI :

power index

PPmax :

maximum amplitude of pressure oscillations

PRF:

primary reference fuel

PRR:

pressure rise rate

RON:

research octane number

SOI:

start of injection

TDC:

top-dead center

THC:

total unburned hydro-carbon

References

  • Abagnale, C., Cameretti, M. C., Simio, L. D., Gambino, M., Iannaccone, S. and Tuccillo, R. (2014). Numerical simulation and experimental test of dual fuel operated diesel engines. Applied Thermal Engineering 65, 1–2, 403–417.

    Article  Google Scholar 

  • Borg, J. M. and Alkidas, A. C. (2006). Characterizaiton of autoignition in a knocking SI engine using heat release analysis. SAE Paper No. 2006–01-3341.

    Google Scholar 

  • Brecq, G., Bellettre, J., Tazerout, M. and Muller, T. (2003). Knock prevention of CHP engines by addition of N2 and CO2 to the natural gas fuel. Applied Thermal Engineering 23, 11, 1359–1371.

    Article  Google Scholar 

  • Celik, M. B. (2008). Experimental determination of suitable ethanol-gasoline blend rate at high compression ratio for gasoline engine. Applied Thermal Engineering 28, 5–6, 396–404.

    Article  Google Scholar 

  • Chen, H., Shuai, S. J. and Wang, G. X. (2007). Study on combustion characteristics and PM emission of diesel engines using ester-ethanol-diesel blended fuels. Proc. Combust. Inst. 31, 2, 2981–2989.

    Article  Google Scholar 

  • Chen, R. H., Chiang, L. B., Chen, C. N. and Lin, T. H. (2011). Cold-start emissions of an SI engine using ethanol gasoline blended fuel. Applied Thermal Engineering 31, 8–9, 1463–1467.

    Article  Google Scholar 

  • Chiriac, R., Radu, B. and Apostolescu, N. (2006). Defining knock characteristics and auto-ignition conditions of LPG with a possible correlation for the control strategy in a SI engine. SAE Paper No. 2006–01-0227.

    Google Scholar 

  • Costa, R. C. and Sodré, J. R. (2011). Compression ratio effects on an ethanol/gasoline fuelled engine performance. Applied Thermal Engineering 31, 2–3, 278–283.

    Article  Google Scholar 

  • Curran, S. J., Hanson, R. M. and Wagner, R. M. (2012). Reactivity controlled compression ignition combustion on a multicylinder light-duty diesel engine. Int. J. Engine Res. 13, 3, 216–225.

    Article  Google Scholar 

  • Demirbas, A. (2000). Conversion of biomass using glycerin to liquid fuel for blending gasoline as alternative engine fuel. Energy Convers Manage 41, 16, 1741–1748.

    Article  Google Scholar 

  • D’errico, G., Lucchini, T., Merola, S. and Tornatore, C. (2012). Application of a thermodynamic model with a complex chemistry to a cycle resolved knock prediction on a spark ignition optical engine. Int. J. Automotive Technology 13, 3, 389–399.

    Article  Google Scholar 

  • Dukowicz, J. K. (1980). A particle-fluid numerical model for liquid sprays. J. Computational Physics 35, 2, 229–253.

    Article  MathSciNet  MATH  Google Scholar 

  • Eckert, P., Kong, S. and Reitz, R. D. (2003). Modeling autoignition and engine knock under spark ignition conditions. SAE Paper No. 2003–01-0011.

    Google Scholar 

  • Feng, T. and Lü, L. (2015). The characteristics of ammonia storage and the development of model-based control for diesel engine urea-SCR system. J. Industrial and Engineering Chemistry, 28, 97–109.

    Article  Google Scholar 

  • Goldsworthy, L. (2013). Fumigation of a heavy duty common rail marine diesel engine with ethanol-water mixtures. Experimental Thermal and Fluid Science, 47, 48–59.

    Article  Google Scholar 

  • Hanjalic, K., Popovac, M. and Hadziabdic, M. (2004). A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD. Int. J. Heat Fluid Flow 25, 6, 1047–1051.

    Article  Google Scholar 

  • He, B. Q., Wang, J. X., Hao, J. M., Yan, X. G. and Xiao, J. H. (2003). A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels. Atmos. Environ. 37, 7, 949–957.

    Article  Google Scholar 

  • International Energy Agency (2010). World Energy Outlook 2010. OECD/IEA. Paris.

    Google Scholar 

  • International Energy Agency (2011). Technology Roadmap Biofuels for Transport. OECD/IEA. Paris.

    Book  Google Scholar 

  • Kabasin, D., Hoyer, K. and Kazour, J. (2009). Heated injectors for ethanol cold starts. SAE Paper No. 2009–01-0615.

    Google Scholar 

  • Lafossas, F. A., Castagne, M., Dumas, J. P. and Henriot, S. (2002). Development and validation of a knock model in spark-ignition engines using a CFD code. SAE Paper No. 2002–01-2701.

    Google Scholar 

  • Lee, S. H., Kwask, J. H., Lee, S. Y. and Lee, J. H. (2015a). On-road chasing and laboratory measurements of exhaust particle emissions of diesel vehicles equipped with aftertreatment technologies (DPF, Urea-SCR). Int. J. Automotive Technology 16, 4, 551–559.

    Article  Google Scholar 

  • Lee, J., Lee, Y., Huh, K. Y., Kwon, H. and Park, J. I. (2015b). Quasi-Dimensional analysis of combustion, emissions and knocking in a homogeneous GDI engine. Int. J. Automotive Technology 16, 5, 877–883.

    Article  Google Scholar 

  • Liang, L., Reitz, R. D., Iyer, C. O. and Yi, J. W. (2007). Modeling knock in spark-ignition engines using a Gequation combustion model incorporating detailed chemical kinetics. SAE Paper No. 2007–01-0165.

    Google Scholar 

  • Linse, D., Kleemann, A. and Hasse, C. (2014). Probability density function approach coupled with detailed chemical kinetics for the prediction of knock in turbocharged direct injection park ignition engines. Combust Flame 161, 4, 997–1014.

    Article  Google Scholar 

  • Liu, A. B. and Reitz, R. D. (1993). Modeling the Effects of Drop Drag and Break-up on Fuel Sprays. SAE Paper No. 930072.

    Google Scholar 

  • Lu, X. C., Han, D. and Huang, Z. (2011). Fuel design and management for the control of advanced compressionignition combustion modes. Progress in Energy and Combustion Science 37, 6, 741–783.

    Article  Google Scholar 

  • Ogawa, H., Setiapraja, H. and Nakamura, T. (2010). Improvements to premixed diesel combustion with ignition inhibitor effects of premixed ethanol by intake port injection. SAE Paper No. 2010–01-0866.

    Google Scholar 

  • O'Rourke, P. J. (1989). Statistical properties and numerical implementation of a model for droplet dispersion in turbulent gas. J. Comput. Physics 83, 2, 345–360.

    Article  MATH  Google Scholar 

  • Padala, S., Le, M. K., Kook, S. and Hawkes, E. R. (2013a). Imaging diagnostics of ethanol port fuel injection sprays for automobile engine applications. Applied Thermal Engineering 52, 1, 24–37.

    Article  Google Scholar 

  • Padala, S., Woo, C., Kook, S. and Hawkes, E. R. (2013b). Ethanol utilisation in a diesel engine using dual-fuelling technology. Fuel, 109, 597–607.

    Article  Google Scholar 

  • Poulopoulos, S. G., Samaras, D. P. and Philippopoulos, C. J. (2001). Regulated and unregulated emissions from an internal combustion engine operating on ethanolcontaining fuels. Atmos. Environ. 35, 26, 4399–4406.

    Article  Google Scholar 

  • Ra, Y. and Reitz, R. D. (2008). A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels. Combust. Flame 155, 4, 713–738.

    Article  Google Scholar 

  • Ra, Y. and Reitz, R. D. (2011). A combustion model for IC engine combustion simulations with multi-component fuels. Combust. Flame 158, 1, 69–90.

    Article  Google Scholar 

  • Rodríguez-Fernández, J., Tsolakis, A., Theinnoi, K., Snowball, J., Sawtell, A. and York, A. P. E. (2009). Engine performance and emissions from dual-fuelled engine with in-cylinder injected diesel fuels and in-port injected bioethanol. SAE Paper No. 2009–01-1853.

    Google Scholar 

  • Sarathy, S., Oßwald, P., Hansen, N. and Kohse-Höinghaus, K. (2014). Alcohol combustion chemistry. Progress in Energy and Combustion Science, 44, 40–102.

    Article  Google Scholar 

  • Sarjovaara, T., Alantie, J. and Larmi, M. (2013). Ethanol dual-fuel combustion concept on heavy duty engine. Energy, 63, 76–85.

    Article  Google Scholar 

  • Sarjovaara, T. and Larmi, M. (2015). Dual fuel diesel combustion with an E85 ethanol/gasoline blend. Fuel, 139, 704–714.

    Article  Google Scholar 

  • Senda, J. and Kobayashi, M. (1994). Modeling of diesel spray impingement on a flat wall. SAE Paper No. 941894.

    Google Scholar 

  • Szwaja, S., Bhandary, K. R. and Naber, J. D. (2007). Comparisons of hydrogen and gasoline combustion knock in a spark ignition engine. Int. J. Hydrogen Energy 32, 18, 5076–5087.

    Article  Google Scholar 

  • Thanapiyawanit, B. and Lu, J. H. (2012). Cooling effect of methanol on an n-heptane HCCI engine using a dual fuel system. Int. J. Automotive Technology 13, 7, 1013–1021.

    Article  Google Scholar 

  • Tsang, K. S., Zhang, Z. H., Cheung, C. S. and Chan, T. L. (2010). Reducing emissions of a diesel engine using fumigation ethanol and a diesel oxidation catalyst. Energy Fuels 24, 11, 6156–6165.

    Article  Google Scholar 

  • Whseppard, C. G., Tolegano, S. and Woolley, R. (2002). On the nature of auto-ignition leading to knock in HCCI engines. SAE Paper No. 2002–01-2831.

    Google Scholar 

  • Wu, H. W., Wang, R. H., Ou, D. J., Chen, Y. C. and Chen, T. Y. (2011). Reduction of smoke and nitrogen oxides of a partial HCCI engine using premixed gasoline and ethanol with air. Appl. Energy 88, 11, 3882–3890.

    Article  Google Scholar 

  • Zhen, X. D., Wang, Y., Xu, S. Q. and Zhu, Y. S. (2013). Study of knock in a high compression ratio sparkignition methanol engine by multi-dimensional simulation. Energy, 50, 150–159.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. D. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, C.B., Zhang, Z.D., Xie, N.L. et al. Knock in dual-fuel diesel combustion with an E85 ethanol/gasoline blend by multi-dimensional simulation. Int.J Automot. Technol. 17, 591–604 (2016). https://doi.org/10.1007/s12239-016-0059-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-016-0059-0

Key words

Navigation