Advertisement

Oxidation kinetics of small CI engine’s biodiesel particulate matter

  • P. KarinEmail author
  • M. Borhanipour
  • Y. Songsaengchan
  • S. Laosuwan
  • C. Charoenphonphanich
  • N. Chollacoop
  • K. Hanamura
Article

Abstract

Particulate matters (PMs) oxidation kinetics by Thermo-gravimetric analysis (TGA) was successfully studied. The chemical content percentage of PM can be divided by oxidation temperature zoning in three main regions which are moisture, unburned hydrocarbon (HC) and carbon. It is clearly observed that the amount of each region is strongly depending on engine operating condition, the amount of unburned HC in low load condition of the engine load are larger than that of high load condition. The calculated apparent activation energies of biodiesel PM oxidation are lower than that of diesel PM and carbon black because of unburned oxygenated molecule. The calculated apparent activation energy of biodiesel and diesel PMs oxidize with air is in the range of 147–157 kJ/mole and 153–165 kJ/mole, respectively. The results of this research would be used as basic information for design and develop removing process of particulate matter emitted from engine combustion which using in diesel and biodiesel fuels.

Key Words

Diesel engine Particulate matter Biodiesel Activation energy Oxidation kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Darcy, P., Costa, P. D., Mellottee, H., Trichard, J. M. and Mariadassou, G. D. (2007). Kinetics of catalyzed and non-catalyzed oxidation of soot from a diesel engine. Catalysis Today, 119, 252–256.CrossRefGoogle Scholar
  2. Eastwood, P. (2008). Particulate Emissions from Vehicles. SAE Int. and John Wiley & Sons, Ltd. Pennsylvania.Google Scholar
  3. Fino, D. and Specchai, V. (2008). Review open issues in oxidative catalysis for diesel particulate abatement. Powder Technology, 180, 64–73.CrossRefGoogle Scholar
  4. Hanamura, K., Karin, P., Cui, L., Rubio, P., Tsuruta, T., Tanaka, T. and Suzuki, T. (2009). Micro- and macroscopic visualization of particulate matter trapping and regeneration processes in wall-flow diesel particulate filters. Int. J. Engine Research, 10, 305–321.CrossRefGoogle Scholar
  5. Heywood, J. B. (1988). Internal Combustion Engine Fundamentals. McGraw-Hill. Singapore.Google Scholar
  6. Ishiguro, T., Takatori, Y. and Akihama, K. (1997). Microstructure of diesel soot particles probed by electron microscopy: First observation of inner core and outer shell. Combustion and Flame, 108, 231–234.CrossRefGoogle Scholar
  7. Karin, P., Cui, L., Rubio, P., Tsuruta, T. and Hanamura, K. (2009). Microscopic visualization of PM trapping and regeneration in micro-structural pores of a DPF wall. SAE Int. J. Fuels and Lubricants 2, 1, 661–669.Google Scholar
  8. Karin, P. and Hanamura, K. (2010). Particulate matter trapping and oxidation on catalyst-membrane. SAE Int. J. Fuels and Lubricants 3, 1, 368–379.Google Scholar
  9. Karin, P., Songsaengchan, Y., Laosuwan, S., Charoenphonphanich, C., Chollacoop, N. and Hanamura, K. (2013). Nanostructure investigation of particle emission by using TEM image processing method. Energy Procedia, 34, 757–766.CrossRefGoogle Scholar
  10. Karin, P., Songsaengchan, Y., Laosuwan, S., Charoenphonphanich, C., Chollacoop, N. and Hanamura, K. (2013). Physical characterization of biodiesel particle emission by electron microscopy. SAE Paper No. 2013-32-9150.CrossRefGoogle Scholar
  11. Kittelson, D. B. (1998). Engines and nanoparticles: A review. J. Aerosol Science, 29, 575–588.CrossRefGoogle Scholar
  12. Lee, S., Lee, D. and Choi, S. C. (2013). Impact of SME blended fuel combustion on soot morphological characteristics in a diesel engine. Int. J. Automotive Technology 14, 5, 757–762.CrossRefMathSciNetGoogle Scholar
  13. Majewski, W. A. and Khair, M. K. (2006). Diesel Emissions and Their Control. SAE Int. and John Wiley & Sons, Ltd. Pennsylvania.Google Scholar
  14. Maricq, M. M. (2007). Review chemical characterization of particulate emissions from diesel engine: A review. J. Aerosol Science, 38, 1079–1118.CrossRefGoogle Scholar
  15. Merkel, G. A., Cutler, W. A. and Warren, C. J. (2001). Thermal durability of wall flow ceramic diesel particulate filters. SAE Paper No. 2001-01-0190.CrossRefGoogle Scholar
  16. Myung, C. L., Choi, S. and Park, S. (2014). Review on characterization of nano-particle emissions and morphology from internal combustion engines: Part 2. Int. J. Automotive Technology 15, 2, 219–227.CrossRefGoogle Scholar
  17. Neeft, J. A., Makkee, M. and Moulijn, J. (1996). Diesel particulate emission control. Fuel Processing Technology, 47, 1–69.CrossRefGoogle Scholar
  18. Neeft, J. A., Nijhuis, T. X., Smakman, E., Makkee, M. and Moulijn, J. A. (1997). Kinetics of the oxidation of diesel soot. Fuel 76, 12, 1129–1136.CrossRefGoogle Scholar
  19. Oki, H., Karin, P. and Hanamura, K. (2011). Visualization of oxidation of soot nanoparticles trapped on a diesel particulate membrane filter. SAE Int. J. Engines 4, 1, 515–526.Google Scholar
  20. Smith, O. I. (1981). Fundamentals of soot formation in flames with application to diesel engine particulate emissions. Progress in Energy and Combustion Science, 7, 275–291.CrossRefGoogle Scholar
  21. Soylu, S. (2014). Examination of PN emissions and size distributions of a hybrid city bus under real world urban driving conditions. Int. J. Automotive Technology 15, 3, 369–376.CrossRefGoogle Scholar
  22. Vander Wal, R. L., Yezerets, A., Currier, N. W., Kim, D. H. and Wang, C. H. (2007). HRTEM Study of diesel soot collected from diesel particulate filters. Carbon, 45, 70–77.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Automotive Engineers and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • P. Karin
    • 1
    Email author
  • M. Borhanipour
    • 1
  • Y. Songsaengchan
    • 1
  • S. Laosuwan
    • 2
  • C. Charoenphonphanich
    • 2
  • N. Chollacoop
    • 3
  • K. Hanamura
    • 4
  1. 1.International CollegeKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  2. 2.Department of EngineeringKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  3. 3.National Science and Technology Development AgencyPathumthaniThailand
  4. 4.Tokyo Institute of TechnologyMeguro-ku, TokyoJapan

Personalised recommendations