Skip to main content
Log in

Stereo vision enabling fast estimation of free space on traffic roads for autonomous navigation

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

A novel algorithm capable of estimating free space for vehicle navigation is presented. When a disparity map — dense or sparse — from stereo matching and a longitudinal profile of the road surface on the disparity domain are provided, the free space is estimated precisely. According to the longitudinal profile of the road surface, the disparity map is classified into an obstacle disparity map and a road surface disparity map. After combining these two disparity maps through a score map, a border line separating the road surface and the non-road surface is estimated using dynamic programming on a udisparity representation. The main contribution of the proposed approach is the robust detection of the free space and the distance between stereo cameras and obstacles, whereby the detection is sufficiently rapid for vehicle navigation. The validity of the proposed algorithm is demonstrated by experiments through many outdoor road images from various traffic scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Badino, H., Mester, R., Vaudrey, T. and Franke, U. (2008). Stereo-based free space computation in complex traffic scenarios. IEEE Southwest Symp. Image Analysis and Interpretation, 189–192.

    Google Scholar 

  • Bertozzi, M. and Broggi, A. (1998). GOLD: A parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Trans. Image Processing 7, 1, 62–81.

    Article  Google Scholar 

  • Hillier, F. S. (2006). Introduction to Operations Research. 8/E. McGraw Hill. New York.

    Google Scholar 

  • Kubota, S., Nakano, T. and Okamoto, Y. (2007). A global optimization algorithm for real-time on-board stereo obstacle detection systems. IEEE Intelligent Vehicle Symp., 7–12.

    Google Scholar 

  • Labayrade, R., Aubert, D. and Tarel, J. P. (2002). Real time obstacle detection in stereovision on non flat road geometry through “V-disparity” representation. Proc. IEEE Intelligent Vehicles Symp., 646–651.

    Google Scholar 

  • Lee, K. Y., Park, J. M. and Lee, J. W. (2014). Estimation of longitudinal profile of road surface from stereo disparity using dijkstra algorithm. Int. J. Control, Automation, and Systems 12, 4, 895–903.

    Article  Google Scholar 

  • Lee, K. Y. and Lee, J. W. (2011). Extracting of corresponding points of stereo images based on dynamic programming. J. Institute of Control, Robotics and Systems 17, 5, 397–404.

    Article  Google Scholar 

  • Lee, K. Y., Lee, J. W. and Houshangi, N. (2009). A stereo matching algorithm based on top-view transformation and dynamic programming for road-vehicle detection. Int. J. Control, Automation, and Systems 7, 2, 221–231.

    Article  Google Scholar 

  • Oniga, F. and Nedevschi, S. (2010). Processing dense stereo data using elevation maps: Road surface, traffic isle, and obstacle detection. IEEE Trans. Veh. Technol. 59, 3, 1172–1182.

    Article  Google Scholar 

  • Song, G. Y. and Lee, J. W. (2013). Accurate dense stereo matching of slanted surfaces using 2D integral images. Proc. ICVS, 828–833.

    Google Scholar 

  • Tsai, R. Y. (1987). A versatile camera calibration technique for high accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robotics Automat RA-3, 4, 323–344.

    Article  Google Scholar 

  • Wedel, A., Franke, U., Badino, H. and Cremers, D. (2008). B-spline modeling of road surfaces for free space estimation. IEEE Intelligent Vehicle Symp., 828–833.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K.Y., Song, G.Y., Park, J.M. et al. Stereo vision enabling fast estimation of free space on traffic roads for autonomous navigation. Int.J Automot. Technol. 16, 107–115 (2015). https://doi.org/10.1007/s12239-015-0012-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-015-0012-7

Key Words

Navigation