Skip to main content
Log in

Automatic parking of vehicles: A review of literatures

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

Collision accidents often occur during parking or reversing cars. In allusion to this point, this paper conducts a review of literatures on automatic parking. To begin with, a brief introduction of automatic parking including its background and significance is given. Then its commercial application, research status and latest progress are summarized which include visual perception, ultrasonic sensors and radar technology, path planning, control algorithms based on fuzzy theory, neural network, image processing and recognition technology, and digital signal processing technology, etc. On further analysis, some reasonable conclusions are drawn and the future work is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhalaq, M., Sheltami, T., Helgeson, B. and Shakshuki, E. M. (2012). Design an integrated driver assistance system using image sensors. J. Int. Manuf, 23, 2109–2132.

    Article  Google Scholar 

  • An, D. and Wang, H. V. (2004). PH: A new laser radar based obstacle avoidance method for intelligent mobile robots. 5th World Cong. Intelligent Control and Automation. Piscataway, NJ, USA, 5, 4681–4685.

    Google Scholar 

  • Baidu (2008). http://wenku.baidu.com/view/5d7980937life910ef12df826.html

  • Baturone, I., Moreno-Velo, F. J., Blanco, V. and Ferruz, J. (2008). Design of embedded DSP-based fuzzy controllers for autonomous mobile robots. IEEE Trans. Industrial Electronics, 55, 928–939.

    Article  Google Scholar 

  • Baturone, I., Moreno-Velo, F. J., Sanchez-Solano, S., Blanco, V. and Ferruz, J. (2005). Embeded fuzzy controllers on standard DSPs. IEEE Int. Symp. Industrial Electronics, Croatia, 1197–1202.

    Google Scholar 

  • Bi, Y. and Tang, T. (2011). Auxiliary parking system based on multi-sensor information fusion. Sichuan Ordnance J. 32, 1, 110–112.

    Google Scholar 

  • Boer, G. A. D. and Albada, G. D. V. (1993). The MARIE autonomous mobile robots. Proc. Conf. Intelligent Autonomous Systems IAS-s, Pittsburgh, 164–173.

    Google Scholar 

  • Borenstein, J. and Koren, Y. (1989). Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Systems, Man, and Cybernetics 19, 5 1179–1187.

    Article  Google Scholar 

  • Borenstein, J. and Koren, Y. (1991). The vector field histogram — fast obstacle avoidance for mobile robots. IEEE J. Robotics and Automation 7, 3, 278–288.

    Article  Google Scholar 

  • Brussel, H. V. and Schutter, J. D. (1991). Hierarchical control of free-navigation AGVs. Proc. Int. Workshop on Information Processing in Autonomous Mobile Robots, Munich, 105–119.

    Google Scholar 

  • Chan-Hong, C. and Cheng-Hsiang, H. (2005). Omnidirectional vision-based parallel parking control design for car-like mobile robot. IEEE Int. Conf. Mechatronics, 562–567.

    Google Scholar 

  • Chen, C. Y. and Feng, H. M. (2008). Hybrid intelligent vision-based car-like vehicle backing system. Expert Systems with Applications 36, 4, 7500–7509.

    Article  MathSciNet  Google Scholar 

  • Chou, L. D., Sheu, C. C. and Chen, H. W. (2006). Design and prototype implementation of a novel automatic vehicle parking system. Int. Conf. Hybrid Information Technology, Jeju Island, Korea, 2, 292–297.

    Google Scholar 

  • Dai, S. and Shi, X. (2012). A model design of automatic tracing and parking system based on ultrasonic distance measurement. Chinese J. Electron Devices 35, 2, 204–207.

    Google Scholar 

  • Daxwanger, W. A. and Schmidt, G. K. (1995). Skill-based visual parking control using neural and fuzzy networks. Proc. IEEE Int. Conf. System, Cybernetics, Vancouver, BC, 2, 1659–1664.

    Google Scholar 

  • Degerman, P., Pohl, J. and Sethson, M. (2007). Ultrasonic sensors modeling for automatic parallel parking system in passenger. SAE World Cong., Detroit, MI, USA, 13–19.

    Google Scholar 

  • Dubins, L. E. (2011). On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal position and tangents. American J. Mathematics, 79, 497–516.

    Article  MathSciNet  Google Scholar 

  • Gorinevsky, D., Pitanovsky, A. K. and Goldenberg, A. (1996). Neural network architecture for trajectory generation and control of automated car parking. IEEE Trans. Controls Systems Technology, 4, 50–56.

    Article  Google Scholar 

  • Gómez-Bravo, F., Cuesta, F. and Ollero, A. (2001). Parallel and diagonal parking in nonholonomic autonomous vehicles. Engineering Applications of Artificial Intelligence 14, 4, 419–434.

    Article  Google Scholar 

  • Holve, R. and Protzel, P. (1996). Reverse parking of a model car with fuzzy control. Proc. 4th European Cong. Intelligent Techniques and Soft Computing, Aachen, Germany, 2171–2175.

    Google Scholar 

  • Hsieh, M. F. (2008). A parking algorithm for an autonomous vehicle. IEEE Intelligent Vehicle Symp., Netherlands, 1155–1160.

    Google Scholar 

  • Hsu, T. H. and Liu, J. F. (2008). Development of an automatic parking system for the vehicle. IEEE Vehicle Power and Propulsion Conf., Harbin, China, 1–6.

    Google Scholar 

  • Inoye, T., Dao, M. Q. and. Liu, K. Z. (2004). Development of an auto-parking system with physical limitations. SICE Annual Conf., Sapporo, Japan, 2, 1015–1020.

    Google Scholar 

  • Jenkins, R. E. and Yuhas, B. P. (1993). A simplified neural network solution through problem decomposition: The case of the truck backer-upper. IEEE Trans. Neural Network, 4, 718–720.

    Article  Google Scholar 

  • Jeong, S. H., Choi, C. G., Oh, J. N., Yoon, P. J., Kim, B. S., Kim, M. and Lee, K. H. (2010). Low cost design of parallel parking assist system based on an ultrasonic sensor. Int. J. Automotive Technology 11, 3, 409–416.

    Article  Google Scholar 

  • Jeong, S. H., Choi, C. G., Oh, J. N., Yoon, P. J., Kim, B. S., Kim, M. and Lee, K. H. (2009). Low cost design of parallel parking assist based on an ultrasonic sensor. Int. J. Automotive Technology 11, 3 409–416.

    Article  Google Scholar 

  • Jiang, K. and Seneviratne, L. D. (1999). A sensor guided autonomous parking system for nonholonomic mobile robots. Proc. 1999 IEEE Int. Conf. Robotics and Automation, Detroit, Michigan, 1, 311–316.

    Google Scholar 

  • Jiang, Z. and Zeng, W. (2008). Automatic vehicle parking system based on binocular vision and path planning. Highways and Automotive Applications, 4, 69–72.

    Google Scholar 

  • Jiang. K. (2002). A sensor guided parallel parking system for nonholonomic vehicles. Proc. IEEE Conf. Intelligent Transportation Systems, Dearborn, MI, USA, 270–275.

    Google Scholar 

  • Jung, H. G. and Cho. Y. H. (2008) Scanning laser radars — based target position designation for parking aid system. IEEE Trans. Intelligent Transportation System 9, 3, 406–424.

    Article  MathSciNet  Google Scholar 

  • Kanayama, Y. and Hartman, B. I. (1989). Smooth local path planning for autonomous vehicles. Proc. IEEE Int. Conf. Robotics and Automation, Scottsdale, Arizona, 1265–1270.

    Google Scholar 

  • Kang, B. and Liang, Y. (2011). Design of intelligent embed based parking assist system. J. Jilin University. Information Science edn. 30, 3, 223–227.

    Google Scholar 

  • Kong, S. G. and Kosko, B. (1990). Comparison of fuzzy and neural truck backer-upper control. 1990 IJCNN Int. Joint Conf. Neural Networks, San Diego, CA, USA, 349–358.

    Google Scholar 

  • Lang, B., Sun, Y., Li, J. and Liu, Y. (2011). Automatic parking demonstration experiment system design based on the ultrasonic ranging. Science and Technology Information, 35–36.

    Google Scholar 

  • Langer, D. and Thorpe, C. (1995). Range sensor based outdoor vehicle navigation, collision avoidance and parallel parking. Autonomous Robots, 2, 147–161.

    Article  Google Scholar 

  • Laugier, C. and Fraichard, T. (1998). Sensor-based control architecture for a car-like vehicle. Intelligent Robotics and System, 1, 216–222.

    Google Scholar 

  • Laugier, C., Fraichard, T. H. and Gamier, P. H. (1999). Sensor-based control architecture for a car-like vehicle. Autonomous Robot 6, 2, 165–185.

    Article  Google Scholar 

  • Laumond, J. P., Jacobs, P. E., Taix, M. and Murray, R. M. (1994). A motion planner for nonholonomic mobile robots. IEEE Trans. Robotics and Automation 10, 5, 577–593.

    Article  Google Scholar 

  • Lee, J. Y. and Lee, J. J. (2007). Multiple designs of fuzzy controllers for car parking using evolutionary algorithm. Proc. Int. Conf. Mechatronics, Kumamoto, 1–6.

    Google Scholar 

  • Lee, K., Kim, D. and Chung, W. (2006). Car parking control using a trajectory tracking controller. SICEICASE Int. Joint Conf., Busan, Korea, 2058–2063.

    Google Scholar 

  • Lee, S., Kim, M., Youm, Y. and Chung, W. (1999). Control of a car-like robot for parking problem. Proc. IEEE Robotics and Automation, Detroit, MI, USA, 1–6.

    Google Scholar 

  • Leitch, D. and Probert, P. J. (1998). New techniques for genetic development of a class of fuzzy controllers. IEEE Trans. Systems, Man and Cybernetics 28, 1, 112–123.

    Article  Google Scholar 

  • Leu, M. C. and Kim, T. Q. (1998). Cell mapping based fuzzy control of car parking. Proc. 1998 IEEE Int. Conf. Robotics and Automation, Leuven, 3, 2494–2499.

    Google Scholar 

  • Li, T. H. (2010). Multi-functional intelligent autonomous parking controllers for car-like mobile robots. IEEE Trans. Industrial Electronics 57, 5, 1687–1700.

    Article  Google Scholar 

  • Li, T. S. and Chang, S. J. (2003). Automous fuzzy parking control of a car-like mobile robot. IEEE Trans. Systems, Man and Cybernetics Part A-Systems and Humans, 33, 451–465.

    Article  Google Scholar 

  • Li, T. S., Chang, S. J. and Chen, Y. X. (2003). Implementation of human-like driving skills by autonomous fuzzy behavior control on a FPGA-based car-like mobile robot. IEEE Trans. Industrial Electronics 50, 5, 867–880.

    Article  Google Scholar 

  • Li, Y. (2009) A new generation of active parking system. Automotive Electronics, 6, 81–83.

    Google Scholar 

  • Lian, K. Y., Chiu, C. S. and Chiang, T. S. (1999). Parallel parking a car-like robot using fuzzy gain scheduling. Proc. 1999 IEEE Int. Conf. Control Applications, Kohala Coast, HI, 2, 1686–1691.

    Article  Google Scholar 

  • Lo, Y. K., Rad, A. B., Wong, C. W. and Ho, M. L. (2003). Automatic parallel parking. 6th IEEE Int. Conf. Inte11igent Transportation Systems, Shanghai, 2, 1190–1193.

    Google Scholar 

  • Lo, Y. K., Rad, A. B., Wong, C. W. and Ho, M. L. (2003). Automatic parallel parking. Proc. 2003 IEEE Int. Conf. Intelligent Transportation Systems, Las Vegas, NV, USA, 2, 1190–1193.

    Article  Google Scholar 

  • Ma, D. and Qu, J. (2011). Research on the car reversing safety technology. Shanghai Auto, 5, 59–62.

    Google Scholar 

  • Ma, S. and Wang, C. (2011). Parking assist system based on visual perception system and fuzzy logic controller. J. Shenyang Jianzhu University (Natural Science) 27, 5, 1000–1004.

    Google Scholar 

  • Miah, S. and Gueaidb, W. (2007). Intelligent parallel parking of a car-like mobile robot using RFID technology. ROSE: Int. Workshop on Robotic and Sensors Environments, 1–6.

    Google Scholar 

  • Milam, M. B. (2003). Real-time Optimal Trajectory Generation for Constrained Dynamical Systems. Ph.D. Dissertation. California Institute of Technology.

    Google Scholar 

  • Milam, M. B., Mushambi, K. and Murray, R. M. (2000). A new computational approach to real-time trajectory generation for constrained mechanical systems. Conf. Decision and Control, Sydney, NSW, 1, 845–851.

    Google Scholar 

  • Muller, B., Deutscher, J. and Grodde, S. (2006). Trajectory generation and feedforward control for parking a car. Proc. 2006 IEEE Int. Conf. Control Applications, Munich, 163–168.

    Google Scholar 

  • Nguyen, D. H. and Widrow, B. (1990). Neural networks for self-learning control systems. Control Systems Magazine, IEEE 10, 3, 18–23.

    Article  Google Scholar 

  • Nieuwstadt, V. (1997). Trajectory Generation for Nonlinear Control Systems. Ph.D. Dissertation. California Institute of Technology.

    Google Scholar 

  • Ozkul, T., Mukbil, M. and Al-Dafri, S. (2008). A fuzzy control logic based hierarchical driver aid for parallel parking. 7th WSEAS Int. Conf. Artificial Intelligence Knowledge Engineering and Data Bases, UK, 357–361.

    Google Scholar 

  • Paromtchik, I. E. and Laugier, C. (1996). Autonomous parallel parking of a nonholonomic vehicle. Proc. IEEE Intelligent Vehicles Symp., Tokyo, Japan, 13–18.

    Google Scholar 

  • Paromtchik, I. E. and Laugier, C. (1996). Motion generation and control for parking an autonomous vehicle. Proc. IEEE Int. Conf. Robotics and Automation, Minneapolis, MN, 4, 3117–3122.

    Article  Google Scholar 

  • Paromtchik, I. E. and Laugier, C. (1997). Autonomous parallel parking and returning to traffic maneuvers. Intelligent Robotics and System, 3, 21–23.

    Google Scholar 

  • Reeds, J. A. and Shepp, L. A. (1990). Optimal path for a car that goes both forward and backward. Pacific J. Mathematics 145, 2, 367–393.

    Article  MathSciNet  Google Scholar 

  • Ross, I. M. (2006). Issues in the real-time computation of optimal control. Mathematical and Computer Modeling, 43, 1172–1188.

    Article  MATH  Google Scholar 

  • Ryu, Y. W. and Oh, S. Y. (2006). Robust automatic parking without odometry using enhanced fuzzy logic controller. 2006 IEEE Int. Conf. Fuzzy Systems, Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada, 521–527.

    Google Scholar 

  • Shi, X. and Wang, C. (2010). An automatic parking system based on laser radar. Mechatronics 16, 3, 72–74.

    Google Scholar 

  • Shirazi, B. and Yih, S. (1989). Learning to control: A heterogeneous approach. Proc. IEEE Int. Symp. Intelligent Control, Albany, NY, USA, 320–325.

    Google Scholar 

  • Sina (2005). Http://auto.sina.com.cn/news/2005-09-09/1442139077.shtml

  • Su-Jin, P. P., Lebeltel, O. and Laugier, C. (2002). Parking a car using Bayesian programming. 7th Int. Conf. Control Automation Robotics and Vision, 2, 728–733.

    Google Scholar 

  • Sugeno, M. and Murakami, K. (1984). Fuzzy parking control of a model car. Proc. 23rd Conf. Decision and Control, Las Vegas, NV, 902–903.

    Google Scholar 

  • Sugeno, M. and Murakami, K. (1985). An experimental study on fuzzy parking control using a model car. Industrial Applications of Fuzzy Control, 105–124.

    Google Scholar 

  • Sugeno, M., Murofushi, T., Mori, T., Tatematsu, T. and Tanaka, J. (1989). Fuzzy algorithmic control of a model car by oral instructions. Fuzzy Sets System, 32, 207–219.

    Article  Google Scholar 

  • Tanaka, K. (1998). Backing control problem of a mobile robot with multiple trailers: Fuzzy modeling and LMIbased design. IEEE Trans. Systems, Man and Cybernetics 28, 3, 329–337.

    Article  Google Scholar 

  • Verma, A. and Junkins, J. (1999). Inverse dynamics approach for real-time determination of feasible aircraft reference trajectories. AIAA Guidance Control and Navigation Conf., Portland, OR, 545–554.

    Google Scholar 

  • Wang, L. (2002). Back-parking control of the car via triultrasonic sensors and CCD camera. M.S. Thesis. National Central University.

    Google Scholar 

  • Wu, W., Chen, H. and Woo, P. (1999). Optimal motion planning for a wheeled mobile robot. Proc. IEEE Int. Conf. Robotics and Automation, Detroit, Michigan, 1, 41–45.

    Google Scholar 

  • Xu, J., Chen, G. and Xie, M. (2000). Vision-guided automatic parking for smart car. Proc. IEEE Int. Vehicles Symp., Dearborn, USA, 725–730.

    Google Scholar 

  • Yasunobu, S. and Murai, Y. (1994). Parking control based on predictive fuzzy control. Proc. IEEE Int. Conf. Fuzzy System, Orlando, FL, 2, 1338–1341.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets, information and control. Information Control, 8, 353–388.

    Article  MathSciNet  Google Scholar 

  • Zhao, Y. and Jr. E. G. C. (2005). Robust automatic parallel parking in tight spaces via Fuzz Logic. Robotics and Autonomous Systems, 51, 111–127.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Song, Y., Zhang, J. et al. Automatic parking of vehicles: A review of literatures. Int.J Automot. Technol. 15, 967–978 (2014). https://doi.org/10.1007/s12239-014-0102-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-014-0102-y

Key Words

Navigation