Skip to main content
Log in

In-situ measurement of loading stresses with X-ray diffraction for yield locus determination

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

The application of the X-ray diffraction method is introduced to solve the problem of inhomogeneous deformation fields in the specimens used for sheet metal characterization. In this method, strains are measured on one side of a specimen with optical measurement systems. On the other side, loading stresses on a specimen are captured with an X-ray diffractometer mounted on a universal testing machine. By this way, the whole stress-strain history of a material point is tracked during testing. The method was first applied to uniaxial tension tests, whereby the applicability of the theory of stress factors and effective X-ray elastic constants were tested. The relaxation behavior of a sheet material which shows itself as stress drops during in-situ experimentation was characterized and compensated by a visco-plastic material model for different stress states. The proposed method was applied to characterize aluminum alloy AA5182 under plane strain tension and shear conditions and the results were compared with the conventionally obtained yield locus. Numerical analyses of a workpiece with the Vegter and Yld2000-2D material models show that the enriched yield locus definition with accurate plane strain tension and shear stresses captures the experimentally obtained surface strains more precisely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, Y. G. and Vegter, H. (2005). Analytical and experimental study of frictional behavior in throughthickness compression test. J. Mater. Process. Technol., 160, 148–155.

    Article  Google Scholar 

  • An, Y. G., Vegter, H. and Elliott, L. (2004). A novel and simple method for the measurement of plane strain work hardening. J. Mater. Process. Technol., 155–156, 1616–1622.

    Article  Google Scholar 

  • Aretz, H. and Barlat, F. (2013). New convex yield functions for orthotropic metal plasticity. Int. J. Non. Linear. Mech., 51, 97–111.

    Article  Google Scholar 

  • Avril, S., Bonnet, M., Bretelle, A.-S., Grédiac, M., Hild, F., Ienny, P., Latourte, F., Lemosse, D., Pagano, S., Pagnacco, E. and Pierron, F. (2008). Overview of identification methods of mechanical parameters based on full-field measurements. Exp. Mech., 48, 381–402.

    Article  Google Scholar 

  • Bachmann, F. and Hielscher, R. S. H. (2010). Texture analysis with MTEX — Free and open source software toolbox. Solid State Phenom., 160, 63–68.

    Article  Google Scholar 

  • Banabic, D. (2005). An improved analytical description of orthotropy in metallic sheets. Int. J. Plast., 21, 493–512.

    Article  MATH  Google Scholar 

  • Barlat, F., Brem, J., Yoon, J., Chung, K., Dick, R., Lege, D., Pourboghrat, F., Choi, S. H. and Chu, E. (2003). Plane stress yield function for aluminum alloy sheets—part 1: Theory. Int. J. Plast., 19, 1297–1319.

    Article  MATH  Google Scholar 

  • Barlat, F., Lege, D. and Brem, J. C. (1991). A sixcomponent yield function for anisotropic materials. Int. J. Plast., 7, 693–712.

    Article  Google Scholar 

  • Barlat, F., Maeda, Y., Chung, K., Yanagawa, M., Brem, J. C., Hayashida, Y., Lege, D., Matsui, K., Murtha, S. J., Hattori, S., Becker, R. and Makosey, S. (1997). Yield function development for aluminum alloy sheets. J. Mech. Phys. Solids, 5096, 1727–1763.

    Article  Google Scholar 

  • Biasuitti, M. and Merklein, M. (2011). Forward and reverse simple shear test experiments for material modeling in forming simulations. Steel Res. Int. Spec. Ed. 1, 702–707.

    Google Scholar 

  • Bouvier, S., Haddadi, H., Levée, P. and Teodosiu, C. (2006). Simple shear tests: Experimental techniques and characterization of the plastic anisotropy of rolled sheets at large strains. J. Mater. Process. Technol., 172, 96–103.

    Article  Google Scholar 

  • Ferron, G. and Makinde, A. J. (1988). Design and development of a biaxial strength testing device. J. Test. Eval., 16, 253–256.

    Article  Google Scholar 

  • Flores, P., Tuninetti, V., Gilles, G., Gonry, P., Duchêne, L. and Habraken, A. M. (2010). Accurate stress computation in plane strain tensile tests for sheet metal using experimental data. J. Mater. Process. Technol., 210, 1772–1779.

    Article  Google Scholar 

  • Gnäupel-Herold, T. (2012). ISODEC: Software for calculating diffraction elastic constants. J. Appl. Crystallogr, 45, 573–574.

    Article  Google Scholar 

  • Gnäupel-Herold, T., Creuziger, A. A. and Iadicola, M. (2012). A model for calculating diffraction elastic constants. J. Appl. Crystallogr., 45, 197–206.

    Article  Google Scholar 

  • Hanabusa, Y., Takizawa, H. and Kuwabara, T. (2013). Numerical verification of a biaxial tensile test method using a cruciform specimen. J. Mater. Process. Technol., 213, 961–970.

    Article  Google Scholar 

  • Hauk, V. (1997). Structural and Residual Stress Analysis by Nondestructive Methods, Structural and Residual Stress Analysis by Nondestructive Methods. Elsevier Science B.V.

    Google Scholar 

  • Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. A., 193, 281–297.

    Article  MATH  Google Scholar 

  • Hill, R. (1990). Constitutive modelling of orthotropic plasticity in sheet metals. J. Mech. Phys. Solids, 38, 405–417.

    Article  MATH  MathSciNet  Google Scholar 

  • Hoferlin, E., Van Bael, A., Van Houtte, P., Steyaert, G. and De Mare, C. (1998). Biaxial tests on cruciform specimens for the validation of crystallographic yield loci. J. Mater. Process. Technol., 80–81, 545–550.

    Article  Google Scholar 

  • Iadicola, M. A. and Gnüpel-Herold, T. H. (2012). Effective X-ray elastic constant measurement for in situ stress measurement of biaxially strained AA5754-O. Mater. Sci. Eng. A, 545, 168–175.

    Article  Google Scholar 

  • Iadicola, M. A., Foecke, T. and Banovic, S. W. (2008). Experimental observations of evolving yield loci in biaxially strained AA5754-O. Int. J. Plast., 24, 2084–2101.

    Article  MATH  Google Scholar 

  • Kuwabara, T. (2007). Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations. Int. J. Plast., 23, 385–419.

    Article  MATH  Google Scholar 

  • Kuwabara, T., Ikeda, S. and Kuroda, K. (1998). Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension. J. Mater. Process., 80–81, 517–523.

    Article  Google Scholar 

  • Noyan, I. (1985). Determination of the elastic constants of inhomogeneous materials with X-ray diffraction. Mater. Sci. Eng., 75, 95–103.

    Article  Google Scholar 

  • Noyan, I. and Cohen, J. B. (1987). Residual Stress: Measurement by Diffraction and Interpretation. Springer Verlag.

    Book  Google Scholar 

  • Rauch, E. (1998). Plastic anisotropy of sheet metals determined by simple shear tests. Mater. Sci. Eng. A, 241, 179–183.

    Article  Google Scholar 

  • Teaca, M., Charpentier, I., Martiny, M. and Ferron, G. (2010). Identification of sheet metal plastic anisotropy using heterogeneous biaxial tensile tests. Int. J. Mech. Sci., 52, 572–580.

    Article  Google Scholar 

  • Thuillier, S. and Manach, P. (2009). Comparison of the work-hardening of metallic sheets using tensile and shear strain paths. Int. J. Plast., 25, 733–751.

    Article  MATH  Google Scholar 

  • Vegter, H. and Van den Boogaard, A. H. (2006). A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states. Int. J. Plast., 22, 557–580.

    Article  MATH  Google Scholar 

  • Watt, J. P., Davies, G. F. and O’Connell, R. J. (1976). The elastic properties of composite materials. Rev. Geophys. Sp. Phys., 14, 541–563.

    Article  Google Scholar 

  • Yoshida, F., Hamasaki, H. and Uemori, T. (2013). A userfriendly 3D yield function to describe anisotropy of steel sheets. Int. J. Plast., 45, 119–139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Güner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güner, A., Zillmann, B., Lampke, T. et al. In-situ measurement of loading stresses with X-ray diffraction for yield locus determination. Int.J Automot. Technol. 15, 303–316 (2014). https://doi.org/10.1007/s12239-014-0031-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-014-0031-9

Key Words

Navigation