Advertisement

Examination of nanoparticles from gasoline direct-injection (GDI) engines using transmission electron microscopy (TEM)

  • H. SeongEmail author
  • S. Choi
  • K. Lee
Article

Abstract

Gasoline direct-injection (GDI) engines have been reported to produce significantly more particulate matter (PM) mass and particulate number (PN) emissions than do port-fuel-injection (PFI) spark ignition engines. Because smallsized particles are of great concern in terms of their regulation, transmission electron microscopy (TEM) was used to evaluate the sizes of primary and aggregate particles that were thermophoretically collected from three different GDI engines under various engine operating conditions. A low load and retarded fuel injection generally reduced the particle size. Consequently, when the fuel injection timing was delayed at low loads, primary and aggregate particles became extremely small. In particular, a number of nanoparticles were sub-23-nm particles. Careful high-resolution TEM (HRTEM) analyses provided the first evidence that these nanoparticles are solid carbon particles with clear fringe patterns and young soot (and/or highly condensed semi-volatiles) with amorphous carbon patterns. Therefore, this result suggests that the current cut-off size at 23 nm for PN regulation in Euro 6 must be further reduced to include sub-23-nm carbon nanoparticles.

Key Words

Sub-23-nm particles Solid carbon nanoparticles GDI engines TEM analysis Morphology PN regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aakko, P. and Nylund, N. O. (2003). Particle emissions at moderate and cold temperatures using different fuels. SAE Paper No. 01-3285.CrossRefGoogle Scholar
  2. Andersson, J., Giechaskiel, B., Munoz-Bueno, R., Sandbach, E. and Dilara, P. (2007). Particle Measurement Programme (PMP) Light-duty Inter-laboratory Correlation Exercise (ILCE-LD) Final Report. Institute for Environment and Sustainability. EUR 22775 EN.Google Scholar
  3. Andersson, J., Mamakos, A., Giechaskiel, B., Carriero, M. and Martini, G. (2010). Particle Measurement Programme (PMP) Heavy-duty Inter-laboratory Correlation Exercise (ILCE-HD) Final Report. Final Report. Joint Research Center, Ispra (VA). EUR 24561 EN.Google Scholar
  4. Barone, T. L., Storey, J. M., Youngquist, A. D. and Szybist, J. P. (2012). An analysis of direct-injection spark-ignition (DISI) soot morphology. Atmospheric Environment, 49, 268–274.CrossRefGoogle Scholar
  5. Braisher, M., Stone, R. and Price, P. (2010). Particle number emissions from a range of European vehicles. SAE Paper No. 01-0786.CrossRefGoogle Scholar
  6. CARB (2010). Preliminary Discussion Paper — Proposed Amendments to California’s Low-emission Vehicle Regulations — Particulate Matter Mass, Ultrafine Solid Particle Number, and Black Carbon Emissions. California Air Resources Board, Sacramento, CA. 11 May.Google Scholar
  7. Filippo, A. D. and Maricq, M. M. (2008). Diesel nucleation mode particles: Semi-volatile or solid?. Environmental Science & Technology 42,21, 7957–7962.CrossRefGoogle Scholar
  8. Gaddam, C. K. and Vander Wal, R. L. (2012). Physical & chemical characterization of SIDI engine particulates. Combustion and Flame, 160, 2517–2528.CrossRefGoogle Scholar
  9. Giechaskiel, B., Chirico, R., DeCarlo, P. F., Clairotte, M., Adam, T., Martini, G., Heringa, M. F., Richter, R., Prevot, A. S. H., Baltensperger, U. and Astorga, C. (2010). Evaluation of the particle measurement programme (PMP) protocol to remove the vehicles’ exhaust aerosol volatile phase. Science of the Total Environment 408,21, 5106–5116.CrossRefGoogle Scholar
  10. Jung, H., Zheng, Z., Johnson, K. C., Liu, Z., Durbin, T. D., Kittelson, D. B., Hu, S. and Huai, T. (2011). Measurement of diesel solid nanoparticle emissions using a catalytic stripper for comparison with Europe’s PMP protocol. Directions in Engine-Efficiency and Emissions Research (DEER).Google Scholar
  11. Kittelson, D. B. (1998). Engines and nanoparticles: A review. J. Aerosol Science 29,5, 575–588.CrossRefGoogle Scholar
  12. Lahde, T., Ronkko, T., Virtanen, A., Schuck, T. J., Pirjola, L., Hameri, K., Kulmala, M., Arnold, F., Rothe, D. and Keskinen, J. (2009). Heavy duty diesel engine exhaust aerosol particle and ion measurements. Environmental Science & Technology 43,1, 163–168.CrossRefGoogle Scholar
  13. Lee, K., Seong, H., Church, W. and McConnell, S. (2012). Examination of particulate emissions from alcohol blended fuel combustion in a GDI engine. The 8 th Int. Symp. Diagnostics and Modeling of Combustion in Internal Combustion Engines (COMODIA). Fukuoka, Japan.Google Scholar
  14. Lee, K., Seong, H., Sakai, S., Hageman, M. and Rothamer, D. (2013). Detailed morphological properties of nanoparticles from gasoline direct injection engine combustion of ethanol blends. SAE Paper No. 24-0185.CrossRefGoogle Scholar
  15. Mathis, U., Kaegi, R., Mohr, M. and Zenobi, R. (2004a). TEM analysis of volatile nanoparticles from particle trap equipped diesel and direct-injection spark-ignition vehicles. Atmospheric Environment 38,26, 4347–4355.CrossRefGoogle Scholar
  16. Mathis, U., Ristimäki, J., Mohr, M., Keskinen, J., Ntziachristos, L., Samaras, Z. and Mikkanen, P. (2004b). Sampling conditions for the measurement of nucleation mode particles in the exhaust of a diesel vehicle. Aerosol Science and Technology 38,12, 1149–1160.CrossRefGoogle Scholar
  17. Myung, C. L. and Park, S. (2012). Exhaust nanoparticle emissions from internal combustion engines: A review. Int. J. Automotive Technology 13,1, 9–22.CrossRefGoogle Scholar
  18. Sakai, S., Hageman, M. and Rothamer, D. (2013). Effect of equivalence ratio on the particulate emissions from a spark-ignited, direct-injected gasoline engine. SAE Paper No. 01-1560.CrossRefGoogle Scholar
  19. Sakurai, H., Tobias, H. J., Park, K., Zarling, D., Docherty, K. S., Kittelson, D. B., McMurry, P. H. and Ziemann, P. J. (2003). On-line measurements of diesel nanoparticle composition and volatility. Atmospheric Environment 37,9, 1199–1210.CrossRefGoogle Scholar
  20. Seong, H., Lee, K. and Choi, S. (2013). Effects of engine operating parameters on morphology of particulates from a gasoline direct injection (GDI) engine. SAE Paper No. 01-2574.CrossRefGoogle Scholar
  21. Sgro, L. A., Sementa, P., Vaglieco, B. M., Rusciano, G., D’Anna, A. and Minutolo, P. (2012). Investigating the origin of nuclei particles in GDI engine exhausts. Combustion and Flame 159,4, 1687–1692.CrossRefGoogle Scholar
  22. Tree, D. R. and Svensson, K. I. (2007). Soot processes in compression ignition engines. Progress in Energy and Combustion Science 33,3, 272–309.CrossRefGoogle Scholar
  23. Zhao, F., Lai, M. C. and Harrington, D. L. (1999). Automotive spark-ignited direct-injection gasoline engines. Progress in Energy and Combustion Science 25,5, 437–562.CrossRefGoogle Scholar
  24. Zheng, Z., Johnson, K. C., Liu, Z., Durbin, T. D., Hu, S., Huai, T., Kittelson, D. B. and Jung, H. S. (2012). Investigation of solid particle number measurement: Existence and nature of sub-23nm particles under PMP methodology. J. Aerosol Science 42,12, 883–897.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Automotive Engineers and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Transportation Technology R&D Center, Energy System DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations