Skip to main content
Log in

Bayesian vehicle class recognition using 3-d probe

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

A new approach is presented to vehicle-class recognition from video clips. Two new concepts introduced are: probes consisting of local 3-d curve-groups which when projected into video frames are features for recognizing vehicle classes in video clips; and Bayesian recognition based on class probability densities for groups of 3-d distances between pairs of 3-d probes. A full Bayesian recognizer is realized via Monte Carlo simulation method. Also, a sub-optimal but robust camera calibration method is employed and tested extensively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amit, Y. and Kong, A. (1996). Graphical templates for model registration. IEEE PAMI, 18, 225–236.

    Article  Google Scholar 

  • Anderson, H. L. (1986). Metropolis, Monte Carlo and the MANIAC. Los Alamos Science, 14, 96–108.

    Google Scholar 

  • Arie-Nachimson, M. and Basri, R. (2009). Constructing implicit 3d shape models for pose estimation. Proc. IEEE Int. Conf. Computer Vision, 1341–1348.

    Google Scholar 

  • Fergus, R. and Perona, P. and Zisserman, A. (2003). Object class recognition by unsupervised scale-invariant learning. Proc. IEEE Conf. Computer Vision and Pattern Recognition.

    Google Scholar 

  • Ferryman, J. M., Worrall, A. D., Sullivan, G. D. and Baker, K. D. (1995). A generic deformable model for vehicle recognition. Proc. British Machine Vision Conf., 127–136.

    Google Scholar 

  • Geman, S. and Kochanek, K. (2001). Dynamic programming and the graphical representation of error-correcting codes. IEEE Trans. Inf. Theory, 47, 549–568.

    Article  MathSciNet  MATH  Google Scholar 

  • Gupte, S., Masoud, O., Martin, R. F. K. and Papanikolopoulos, N. P. (2002). Detection and classification of vehicles. IEEE Trans. Intelligent Transportation Systems 3,1, 37–47.

    Article  Google Scholar 

  • Han, D., Hwang, J., Cooper, D. B. and Hahn, H. (2012). Robust three-dimensional vehicle reconstruction using cross-ratio invariance. Computer Vision, IET 6,3, 186–196.

    Article  MathSciNet  Google Scholar 

  • Han, D., Hwang, J., Hahn, H. and Cooper, D. B. (2010). Vehicle class recognition using multiple video cameras. Visual Surveillance, 246–255.

    Google Scholar 

  • Han, D., Leotta, M. J., Cooper, D. B. and Mundy, J. L. (2005). Vehicle class recognition from video-based on 3- d curve probes. Visual Surveillance and Performance Evaluation of Tracking and Surveillance. 285–292.

    Google Scholar 

  • Hartley, R. and Zisserman, A. (2000). Multiple View Geometry in Computer Vision. Cambridge University Press.

    MATH  Google Scholar 

  • Jolly, M. P. D., Lakshmanan, S. and Jain, A. K. (1996). Vehicle segmentation and classification using deformable templates. IEEE Trans. Pattern Analysis and Machine Intelligence 18,3, 293–308.

    Article  Google Scholar 

  • Khan, S. M., Cheng, H., Matthies, D. and Sawhney, H. (2010). 3D model based vehicle classification in aerial imagery. Constructing implicit 3d shape models for pose estimation. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1681–1687.

    Google Scholar 

  • Koller, D. (1993). Moving object recognition and classification based on recursive shape parameter estimation. Proc. 12th Israel Conf. Artificial Intelligence, Computer Vision, 27–28.

    Google Scholar 

  • LeCun, Y., Huang, F. J. and Bottou, L. (2004). Learning methods for generic object recognition with invariance to pose and lighting. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 11–97.

    Google Scholar 

  • Leotta, M. J. and Mundy, J. L. (2007). Epipolar curve tracking in 3-D. Image Processing. ICIP 2007. IEEE Int. Conf., 6, VI-325–VI-328.

    Google Scholar 

  • Leotta, M. J. and Mundy, J. L. (2011). Vehicle surveillance with a generic, adaptive, 3-d vehicle model. IEEE PAMI, 1457–1469.

    Google Scholar 

  • Liebeit, J. and Schmid, C. (2010). Multi-view object class detection with a 3-d geometric model. Constructing implicit 3d shape models for pose estimation. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1688–1695.

    Google Scholar 

  • Marr, D. and Nishihara, H. K. (1978). Representation and recognition of the spatial organization of three-dimensional shapes. Proc. Royal Society B: Biological Sciences 200,1140, 269–294.

    Article  Google Scholar 

  • Mohottala, S., Kagesawa, M. and Ikeuchi, K. (2003). Vehicle class recognition using 3-D CG. Proc. 2003 ITS World Cong.

    Google Scholar 

  • Ozcanli, O. C., Tamrakar, A., Kimia, B. B. and Mundy, J. L. (2006). Augmenting shape with appearance in vehicle category recognition. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 935–942.

    Google Scholar 

  • Petrovic, V. S. and Cootes, T. F. (2004). Analysis of features for rigid structure vehicle type recognition. Proc. British Machine Vision Conf. 2004.

    Google Scholar 

  • Shan, Y., Matei, B., Sawhney, H. S., Kumar, R., Huber, D. and Hebert, M. (2004). Linear model hashing and batch RANSAC for rapid and accurate object recognition. Proc. IEEE Conf. Computer Vision and Pattern Recognition.

    Google Scholar 

  • Stark, M., Goesele, M. and Schiele, B. (2010). Back to the future: Learning shape models from 3D CAD data. Proc. British Machine Vision Conf.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, D., Cooper, D.B. & Hahn, H.S. Bayesian vehicle class recognition using 3-d probe. Int.J Automot. Technol. 14, 747–756 (2013). https://doi.org/10.1007/s12239-013-0082-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-013-0082-3

Key Words

Navigation