Skip to main content
Log in

Fuzzy adaptive sliding mode controller for an air spring active suspension

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

A fuzzy adaptive sliding mode controller for an air spring active suspension system is developed. Due to nonlinearity, preload-dependent spring force and parameter uncertainty in the air spring, it is difficult to control the suspension system. To achieve the desired performance, a fuzzy adaptive sliding mode controller (FASMC) is designed to improve the passenger comfort and the manipulability of the vehicle. The fuzzy adaptive system handles the nonlinearity and uncertainty of the air suspension. A normal linear suspension model with an optimal state feedback control is designed as the reference model. The simulation results show that this control scheme more effectively and robustly isolates vibrations of the vehicle body than the conventional sliding mode controller (CSMC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, H., Liu, Z. Y. and Sun, P. Y. (2005). Application of constrained H control to active suspension systems on half-car models. ASME, J. Dynamic Systems, Measurement and Control, 127, 345–354.

    Article  Google Scholar 

  • Choi, S. B., Choi, Y. T. and Park, D. W. (2000). A sliding mode control of a full-car electrorheological suspension system via hardware in-the-loop simulation. ASME, J. Dynamic Systems, Measurement, and Control, 122, 144–121.

    Google Scholar 

  • D’Amato, F. J. and Vissolo, D. E. (2000). Fuzzy control for active suspensions. Mechatronics, 10, 897–920.

    Article  Google Scholar 

  • Eickhoff, B. M. and Minnis, A. J. (1995). A review of modeling methods for railway vehicle suspension components. Vehicle System Dynamics, 24, 469–496.

    Article  Google Scholar 

  • Ge, S. S., Lee, T. H. and Harris, C. J. (1998). Adaptive Neural Network Control of Robotic Manipulators. World Scientific Publishing Co. Singapore.

    Book  Google Scholar 

  • Guaglia, G. and Sorli, M. (2001). Air suspension dimensionless analysis and design procedure. Vehicle System Dynamics 35,6, 443–475.

    Article  Google Scholar 

  • He, Y. and McPhee, J. (2005). Multidisciplinary design optimization of mechatronic vehicles with active suspensions. J. Sound and Vibration, 283, 217–241.

    Article  MATH  Google Scholar 

  • Hirose, M., Matsushige, S., Buma, S. and Kamiya, K. (1988). Toyota electronic modulated air suspension system for the 1986 Soarer. IEEE Trans. Industrial Electronics 35,2, 193–200.

    Article  Google Scholar 

  • Hrovat, D. (1997). Survey of advanced suspension developments and related optimal control application. Automatica 33,10, 1781–1817.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, S. J. and Chao, H. C. (2000). Fuzzy logic controller for a vehicle active suspension system. Proc. Instn. Mech. Engrs., Part D: J. Automobile Eng., 214, 1–12.

    Article  Google Scholar 

  • Huang, S. J. and Lin, W. C. (2003). Adaptive fuzzy controller with sliding surface for vehicle suspension control. IEEE Trans. Fuzzy Systems 11,4, 550–559.

    Article  Google Scholar 

  • Kim, C. and Ro, P. I. (1998). A sliding mode controller for vehicle active suspension systems with non-linearities. Proc. Instn. Mech. Engrs., Part D: J. Automobile Eng., 212, 79–92.

    Article  Google Scholar 

  • Kung, C. C. and Chen, T. H. (2005). Observer-based indirect adaptive fuzzy sliding mode control with state variable filters for unknown nonlinear dynamical systems. Fuzzy Sets and Systems, 155, 292–308.

    Article  MathSciNet  MATH  Google Scholar 

  • Lu, J. (2004). A frequency-adaptive multi-objective suspension control strategy. ASME, J. Dynamic Systems, Measurement, and Control, 126, 700–707.

    Article  Google Scholar 

  • Ogawa, K., Satoh, K. and Enomoto, T. (2003). Development of damping control system for air suspension. JSAE Review, 17, 319–324.

    Google Scholar 

  • Ramsbottom, M., Crolla, D. A. and Plummer, A. R. (1999). Robust adaptive control of an active vehicle suspension system. Proc. Instn. Mech. Engrs., Part D: J. Automobile Eng., 213, 1–17.

    Article  Google Scholar 

  • Rao, M. V. C. and Prahlad, V. (1997). A tunable fuzzy logic controller for vehicle-active suspension systems. Fuzzy Sets and Systems, 85, 11–21.

    Article  Google Scholar 

  • Rattasiri, W. and Halgamuge, S. K. (2003). Computationally advantageous and stable hierarchical fuzzy systems for active suspension. IEEE Trans. Industrial Electronics 50,1, 48–61.

    Article  Google Scholar 

  • Slotine, J. J. and Li, W. (1991). Applied Nonlinear Control. Prentice Hall. New Jersey.

    MATH  Google Scholar 

  • Suda, Y. and Kumaki, S. (1998). Study on curving characteristic of vehicles with nonlinear air suspension. JSME Int. J., Series C 41,3, 668–673.

    Article  Google Scholar 

  • Sunwoo, M., Cheok, K. C. and Huang, N. J. (1991). Model reference adaptive control for vehicle active suspension systems. IEEE Trans. Industrial Electronics 38,3, 217–222.

    Article  Google Scholar 

  • Ting, C. S., Li, T. H. and Kung, F. C. (1995). Design of fuzzy controller for active suspension system. Mechatronics 4,5, 365–383.

    Article  Google Scholar 

  • Toyofuku, K., Yamada, C., Kagawa, T. and Fujita, T. (1999). Study on dynamic characteristic analysis of air spring with auxiliary chamber. JSAE Review, 20, 349–355.

    Article  Google Scholar 

  • Utkin, V. I. (1977). Variable structure systems with sliding modes. IEEE Trans. Automat. Contr, 22, 212–222.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, J., Rad, A. B. and Chan, P. T. (2001). Indirect adaptive fuzzy sliding mode control: Part I: Fuzzy switching. Fuzzy Sets and Systems, 122, 21–30.

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao, J. and Kulakowski, B. T. (2003). Sliding mode control of active suspension for transit buses based on a novel air-spring model. Proc. American Control Conf., Denver, Colorado, 3768–3773.

  • Yoshimura, T., Kume, A., Kurimoto, M. and Hino, J. (2001). Construction of an active suspension system of a quarter car model using the concept of sliding mode control. J. Sound and Vibration 239,2, 187–199.

    Article  Google Scholar 

  • Zhang, Y. Q., Zhao, Y. S., Yang, J. and Chen, L. P. (2007). A dynamic sliding-mode controller with fuzzy adaptive tuning for an active suspension system. Proc. Instn. Mech. Engrs., Part D: J. Automobile Eng., 221, 417–428.

    Article  Google Scholar 

  • Zuo, L., Slotine, J. J. and Nayfeh, S. A. (2005). Model reaching adaptive control for vibration isolation. IEEE Trans. Control Systems Technology 13,4, 611–617.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. -S. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, W.N., Chen, L.P., Zhang, Y.Q. et al. Fuzzy adaptive sliding mode controller for an air spring active suspension. Int.J Automot. Technol. 13, 1057–1065 (2012). https://doi.org/10.1007/s12239-012-0108-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-012-0108-2

Key Words

Navigation