On-road visual vehicle tracking using Markov chain Monte Carlo particle filtering with metropolis sampling

Abstract

In this study, a method for vehicle tracking through video analysis based on Markov chain Monte Carlo (MCMC) particle filtering with metropolis sampling is proposed. The method handles multiple targets with low computational requirements and is, therefore, ideally suited for advanced-driver assistance systems that involve real-time operation. The method exploits the removed perspective domain given by inverse perspective mapping (IPM) to define a fast and efficient likelihood model. Additionally, the method encompasses an interaction model using Markov Random Fields (MRF) that allows treatment of dependencies between the motions of targets. The proposed method is tested in highway sequences and compared to state-of-the-art methods for vehicle tracking, i.e., independent target tracking with Kalman filtering (KF) and joint tracking with particle filtering. The results showed fewer tracking failures using the proposed method.

This is a preview of subscription content, access via your institution.

References

  1. Arróspide, J., Salgado, L., Nieto, M. and Jaureguízar, F. (2008). On-board robust vehicle detection and tracking using adaptive quality evaluation. Proc. IEEE Int. Conf. Image Processing, San Diego, CA, USA, 2008–2011.

  2. Arulampalam, S., Maskell, S., Gordon, N. and Clapp, T. (2002). A tutorial on particle filters for on-line nonlinear/non-gaussian bayesian tracking. IEEE Trans. Signal Processing 50,2, 174–188.

    Article  Google Scholar 

  3. Asadi, M., Monti, F. and Regazzoni, C. S. (2008). Feature classification for robust shape-based collaborative tracking and model updating. EURASIP J. Image and Video Processing, Article ID, 274349, 21.

  4. Avidan, S. (2007). Ensemble tracking. IEEE Trans. Pattern Analysis and Machine Intelligence 29,2, 261–271.

    Article  Google Scholar 

  5. Barth, A. and Franke, W. (2009). Estimating the driving state of oncoming vehicles from a moving platform using stereo vision. IEEE Trans. Intelligent Transportations Systems 10,4, 560–571.

    Article  Google Scholar 

  6. Bertozzi, M. and Broggi, A. (1998). Gold: A parallel realtime stereo vision system for generic obstacle and lane detection. IEEE Trans. Image Processing 7,1, 62–81.

    Article  Google Scholar 

  7. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. New York.

    MATH  Google Scholar 

  8. Chen, X., Schonfeld, D. and Khokhar, A. A. (2009). Localization and trajectory estimation of mobile objects using minimum samples. IEEE Trans. Vehicular Technology 58,8, 4439–4446.

    Article  Google Scholar 

  9. Choi, H.-C.., Park, J.-M., Choi, W.-S. and Oh, S.-Y. (2012). Vision-based fusion of robust lane tracking and forward vehicle detection in a real driving environment. Int. J. Automotive Technology 13,4, 653–669.

    Article  Google Scholar 

  10. Comaniciu, D., Ramesh, V. and Meer, P. (2003). Kernelbased object tracking. IEEE Trans. Pattern Analysis and Machine Intelligence 25,5, 564–577.

    Article  Google Scholar 

  11. del Blanco, C. R., Jaureguizar, F. and García, N. (2011). An advanced bayesian model for the visual tracking of multiple interacting objects. EURASIP J. Advances in Signal Processing 2011,130, 13.

    Google Scholar 

  12. Goecke, R., Pettersson, N. and Pettersson, L. (2007). Towards detection and tracking of on-road objects. Proc. IEEE Intelligent Vehicles Symp., Istanbul, Turkey, 416–421.

  13. Hoffmann, C. (2006). Fusing multiple 2D visual features for vehicle detection. Proc. IEEE Intelligent Vehicles Symp., Tokyo, Japan, 406–411.

  14. Hwang, J. and Huh, K. (2009). Vehicle detection system design based on stereo vision sensors. Int. J. Automotive Technology 10,3, 373–379.

    Article  Google Scholar 

  15. Khan, Z., Balch, T. and Dellaert, F. (2005). MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Trans. Pattern Analysis and Machine Intelligence 27,11, 1805–1819.

    Article  Google Scholar 

  16. Lee, B. and Kim, G. (2012). Robust detection of precending vehicles in crowded traffic conditions. Int. J. Automotive Technology 13,4, 671–678.

    Article  Google Scholar 

  17. Leibe, B., Schindler, K, Cornelis, N. and Van Gool, L. (2008). Coupled object detection and tracking from static cameras and moving vehicles. IEEE Trans. Pattern Analysis and Machine Intelligence 30,10, 1683–1698.

    Article  Google Scholar 

  18. Nieto, M., Arróspide, J. and Salgado, L. (2011). Road environment modeling using robust perspective analysis and recursive bayesian segmentation. Machine Vision and Applications 22,6, 927–945.

    Article  Google Scholar 

  19. Sun, Z., Bebis, G. and Miller, R. (2006). Monocular precrash vehicle detection: Features and classifiers. IEEE Trans. Image Processing 15,7, 2019–2034.

    Article  Google Scholar 

  20. Sundaresan, A. and Chellappa, R. (2009). Multicamera tracking of articulated human motion using shape and motion cues. IEEE Trans. Image Processing 18,9, 2114–2126.

    MathSciNet  Article  Google Scholar 

  21. Tran, S. and Davis, L. (2007). Robust object tracking with regional affine invariant features. Proc. IEEE Int. Conf. Computer Vision, Rio de Janeiro, Brazil, 1–8.

  22. Vermaak, J., Doucet, A. and Pérez, P. (2003). Maintaining multi-modality through mixture tracking. Proc. IEEE Int. Conf. Computer Vision, Nice, France, 1110–1116.

  23. Wang, J., Yin, Y. and Man, H. (2008). Multiple human tracking using particle filter with gaussian process dynamical model. EURASIP J. Image and Video Processing, Article ID 969456, 10.

  24. Wu, B. and R. Nevatia (2007). Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. Int. J. Computer Vision 75,2, 247–266.

    Article  Google Scholar 

  25. Zhao, T. and Nevatia, R. (2004). Tracking multiple humans in complex situations. IEEE Trans. Pattern Analysis and Machine Intelligence 26,9, 1208–1221.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Arróspide.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arróspide, J., Salgado, L. On-road visual vehicle tracking using Markov chain Monte Carlo particle filtering with metropolis sampling. Int.J Automot. Technol. 13, 955–961 (2012). https://doi.org/10.1007/s12239-012-0097-1

Download citation

Key Words

  • Intelligent vehicles
  • Image analysis
  • Object tracking
  • Monte Carlo methods