Abstract
Experimental and numerical analyses of laminar diffusion flames were performed to identify the effect of fuel mixing on soot formation in a counterflow burner. In this experiment, the volume fraction, number density, and particle size of soot were investigated using light extinction/scattering systems. The experimental results showed that the synergistic effect of an ethylene-propane flame is appreciable. Numerical simulations showed that the benzene (C6H6) concentration in mixture flames was higher than in ethylene-base flames because of the increase in the concentration of propargyl radicals. Methyl radicals were found to play an important role in the formation of propargyl, and the recombination of propargyl with benzene was found to lead to an increase in the number density for cases exhibiting synergistic effects. These results imply that methyl radicals play an important role in soot formation, particularly with regard to the number density.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Anderson, H., McEnally, C. S. and Pfefferle, L. D. (2000). Experimental study of naphathalene formation in nonpremixed flames doped with diacetylene, vinylacetylene, and other hydrocarbon: Evidence for pathways involving C4 specied. Proc. Combust. Inst., 28, 2577.
Bogaard, M. P., Buckingham, A. D., Pierens, R. K. and White, A. H. (1978). Rayleigh scattering depolarization ratio and molecular polarizability anisotropy for gases. J. Chem. Society, Faraday Transactions, 74, 3008.
Bohren, C. F. and Huffman, D. R. (1983). Absorption and Scattering of Light by Small Particles. John Willey & Sons. New York.
Castaldi, M. J., Marinov, N. M., Melius, C. F., Huang, J., Senkan, S. M., Pitz, W. J. and Westbrook, C. K. (1996). Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame. Symp.(Int.) Combust., 26, 693.
Choi, J. H., Fujita, O., Tsuiki, T., Kim, J. and Chung, S. H. (2005). A study of effect of oxygen concentration on the soot deposition process in a diffusion flame along a solid wall by in-situ observation in microgravity. JSME Int. J. (B), 48, 839.
Choi, J. H., Fujita, O., Tsuiki, T., Kim, J. and Chung, S. H. (2006). In-situ observation of the soot deposition process on a solid wall with a diffusion flame long the wall. JSME Int. J.(B), 49, 167.
Cole, J. A., Ederer, H. J., Stabel, U. and Howard, J. B. (1992). Formation mechanisms of aromatic compounds in aiiphatic flames. Combust. Flame, 56, 51–70.
D’Anna, A. and Violi, A. (1998). Kinetic model for the formation of aromatic hydrocarbons in premixed laminar flames. Symp.(Int.) Combust., 27, 425.
D’Anna, A., Violi, A. and D’Alessio, A. (2000). Modeling the rich combustion of aliphatic hydrocarbons. Combust. Flame, 121, 418.
Dobbins, R. A., Santoro, R. J. and Semerjian, H. G. (1984). Interpretation of optical measurement of soot in flames. Prog. Astronaut. Aeronaut., 92, 208–237.
Dobbins, R. A., Santoro, R. J. and Semerjian, H. G. (1990). Analysis of light scattering form soot using optical cross sections for aggregates. Proc. Combust. Inst., 23, 1525.
Frenklach, M., Clary, D. W., William, C., Gardiner, J. R. and Stephen, E. S. (1984). Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. 20th Proc. Combust. Inst., 20, 887.
Frenlach, M. and Warnatz, J. (1987). Detailing modeling of PAH profiles in a sooting low-pressure acetylene flame. Combust. Sci. Tech., 51, 265–283.
Frenlach, M. (1988). On the driving force of PAH production. Proc. Combust. Inst., 22, 1075.
Fu, P. P., Belend, F. A. and Yang, S. K. (1980). Cyclopentapolycyclic aromatic hydrocarbons: Potential carcinogens and mutagens. Carcinogenesis, 1, 725–727.
Glassman, I. (1988). Soot formation in combustion processes. Proc. Combust. Inst., 22, 295.
Hidaka, Y., Sato, K., Hoshikawa, H., Nishimori, T., Takahashi, R., Tanaka, H., Inami, K. and Ito, N. (2000). Shock-tube and modeling study of ethane pyrolysis and oxidation. Combust. Flame, 120, 245.
Hwang, J. Y., Lee, W., Kang, H. G. and Chung, S. H. (1998). Synergistic effect of ethylene-propane mixture on soot formation in laminar diffusion flames. Combust. Flame, 114, 370.
Hwang, J. Y. (1999). Soot Formation in Counterflow Diffusion Flames of Ethylene and Propane. Ph. D. Dissertation. Seoul National University. Korea.
Hwang, J. Y. and Chung, S. H. (2001). Growth of soot particles in counterflow diffusion flames of ethylene. Combust. Flame, 125, 752.
Kang, K. T., Hwang, J. Y., Chung, S. H. and Lee, W. (1997). Soot zone structure and sooting limit in diffusion flames: Comparison of counterflow and co-flow flames. Combust. Flame, 109, 266.
Kee, R. J., Warnatz, J. and Miller, J. A. (1983). Sandia National Laboratories Report No. SAND 83-8209.
Kee, R. J., Rupley, F. M., Meeks, E. and Miller, J. A. (1996). Sandia National Laboratories Report No. SAND96-8216.
Lee, S. D. and Chung, S. H. (1994). On the structure and extinction of interacting lean methane/air premixed flames. Combust. Flame, 98, 80.
Lee, U. J., Oh, K. C. and Shin, H. D. (2005). Soot formation in inverse diffusion flames of diluted ethane. Fuel, 84, 543.
Marinov, N. M., Pitz, W. J., Westbrook, C. K., Castaldi, M. J. and Senkan, S. M. (1996). Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames. Combust. Sci. Tech. 116, 117, 211.
Marinov, N. M., Castaldi, M. J., Melius, C. F. and Tsang, W. (1997). Aromatic and polycyckic aromatic hydrocarbon formation in a premixed propane flame. Combust. Sci. Tech., 128, 295.
McEnally, C. S. and Pfefferle, L. D. (1997). Experimental assessment of naphthalene formation mechanisms in non-premixed flame. Combust. Sci. Tech., 128, 257.
McEnally, C. S. and Pfefferle, L. D. (1998). An experimental study in nonpremixed flames of hydrocarbon growth processes that involve five membered carbon rings. Combust. Sci. Tech., 131, 323.
McEnally, C. S. and Pfefferle, L. D. (2007). The effects of dimethyl ether and ethanol on benzeneand soot formation in ethylene nonpremixed flames. Proc. Combust. Inst., 31, 603.
Miller, J. A. and Melius, C. F. (1992). Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels. Combust. Flame, 91, 21.
Oh, K. C. and Shin, H. D. (2006). The effect of oxygen and carbon dioxide concentration on soot formation in nonpremixed flames. Fuel, 85, 615.
Rudder, R. R. and Bach, D. R. (1968). Rayleigh scattering of ruby-laser light by neutral gases. J. Optical Society of America, 58, 1260.
Smooke, M. D. (1982). Solution of burner stabilized premixed laminar flames by boundary value methods. J. Comput. Phys., 48, 72.
Smooke, M. D., Long, M. B., Connelly, B. C., Colket, M. B. and Hall, R. J. (2005). Soot formation in laminar flames. Combust. Flame, 143, 613.
Solomons, T. W. G. and Fryhle, C. B. (2000). Organic Chemistry. 7th Edn. John Wiley & Sons. New York.
Vandsburger, U., Kennedy, I. and Glassman, I. (1984). Sooting counterflow diffusion flames with varying oxygen index. Combust. Sci. and Tech., 39, 263.
Yoon, S. S., Lee, S. M. and Chung, S. H. (2005). Effect of mixing methane, ethane, propane, and propene on the synergistic effect of PAH and soot formation in ethylenebase counterflow diffusion flames. Proc. Combust. Inst., 30, 1417.
Waldmann, L. and Schmitt, K. H. (1996). Thermophoresis and Diffusionphoresis of Aerosols. Aerosol Science (Davies, C. N. Edn). Academic Press. New York. 137–162.
Wang, H., You, X., Joshi, A. V., Davis, S. G., Egolfopoulos, F. and Law, C. K. (2007). USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/USC_Mech_II.htm.
Zhao, B., Yang, Z., Li, Z., Johnston, M. V. and Wang, H. (2005) Particle size distribution function of incipient soot in laminar premixed ethylene flames: Effect of flame temperature. Proc. Combust. Inst., 30, 1441.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Choi, B.C., Choi, S.K., Chung, S.H. et al. Experimental and numerical investigation of fuel mixing effects on soot structures in counterflow diffusion flames. Int.J Automot. Technol. 12, 183–191 (2011). https://doi.org/10.1007/s12239-011-0022-z
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12239-011-0022-z