Skip to main content
Log in

Experimental and numerical investigation of fuel mixing effects on soot structures in counterflow diffusion flames

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

Experimental and numerical analyses of laminar diffusion flames were performed to identify the effect of fuel mixing on soot formation in a counterflow burner. In this experiment, the volume fraction, number density, and particle size of soot were investigated using light extinction/scattering systems. The experimental results showed that the synergistic effect of an ethylene-propane flame is appreciable. Numerical simulations showed that the benzene (C6H6) concentration in mixture flames was higher than in ethylene-base flames because of the increase in the concentration of propargyl radicals. Methyl radicals were found to play an important role in the formation of propargyl, and the recombination of propargyl with benzene was found to lead to an increase in the number density for cases exhibiting synergistic effects. These results imply that methyl radicals play an important role in soot formation, particularly with regard to the number density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anderson, H., McEnally, C. S. and Pfefferle, L. D. (2000). Experimental study of naphathalene formation in nonpremixed flames doped with diacetylene, vinylacetylene, and other hydrocarbon: Evidence for pathways involving C4 specied. Proc. Combust. Inst., 28, 2577.

    Article  MATH  Google Scholar 

  • Bogaard, M. P., Buckingham, A. D., Pierens, R. K. and White, A. H. (1978). Rayleigh scattering depolarization ratio and molecular polarizability anisotropy for gases. J. Chem. Society, Faraday Transactions, 74, 3008.

    Article  Google Scholar 

  • Bohren, C. F. and Huffman, D. R. (1983). Absorption and Scattering of Light by Small Particles. John Willey & Sons. New York.

    Google Scholar 

  • Castaldi, M. J., Marinov, N. M., Melius, C. F., Huang, J., Senkan, S. M., Pitz, W. J. and Westbrook, C. K. (1996). Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame. Symp.(Int.) Combust., 26, 693.

    Article  Google Scholar 

  • Choi, J. H., Fujita, O., Tsuiki, T., Kim, J. and Chung, S. H. (2005). A study of effect of oxygen concentration on the soot deposition process in a diffusion flame along a solid wall by in-situ observation in microgravity. JSME Int. J. (B), 48, 839.

    Article  Google Scholar 

  • Choi, J. H., Fujita, O., Tsuiki, T., Kim, J. and Chung, S. H. (2006). In-situ observation of the soot deposition process on a solid wall with a diffusion flame long the wall. JSME Int. J.(B), 49, 167.

    Article  Google Scholar 

  • Cole, J. A., Ederer, H. J., Stabel, U. and Howard, J. B. (1992). Formation mechanisms of aromatic compounds in aiiphatic flames. Combust. Flame, 56, 51–70.

    Article  Google Scholar 

  • D’Anna, A. and Violi, A. (1998). Kinetic model for the formation of aromatic hydrocarbons in premixed laminar flames. Symp.(Int.) Combust., 27, 425.

    Article  Google Scholar 

  • D’Anna, A., Violi, A. and D’Alessio, A. (2000). Modeling the rich combustion of aliphatic hydrocarbons. Combust. Flame, 121, 418.

    Article  Google Scholar 

  • Dobbins, R. A., Santoro, R. J. and Semerjian, H. G. (1984). Interpretation of optical measurement of soot in flames. Prog. Astronaut. Aeronaut., 92, 208–237.

    Google Scholar 

  • Dobbins, R. A., Santoro, R. J. and Semerjian, H. G. (1990). Analysis of light scattering form soot using optical cross sections for aggregates. Proc. Combust. Inst., 23, 1525.

    Google Scholar 

  • Frenklach, M., Clary, D. W., William, C., Gardiner, J. R. and Stephen, E. S. (1984). Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. 20th Proc. Combust. Inst., 20, 887.

    Article  Google Scholar 

  • Frenlach, M. and Warnatz, J. (1987). Detailing modeling of PAH profiles in a sooting low-pressure acetylene flame. Combust. Sci. Tech., 51, 265–283.

    Article  Google Scholar 

  • Frenlach, M. (1988). On the driving force of PAH production. Proc. Combust. Inst., 22, 1075.

    Google Scholar 

  • Fu, P. P., Belend, F. A. and Yang, S. K. (1980). Cyclopentapolycyclic aromatic hydrocarbons: Potential carcinogens and mutagens. Carcinogenesis, 1, 725–727.

    Article  Google Scholar 

  • Glassman, I. (1988). Soot formation in combustion processes. Proc. Combust. Inst., 22, 295.

    Google Scholar 

  • Hidaka, Y., Sato, K., Hoshikawa, H., Nishimori, T., Takahashi, R., Tanaka, H., Inami, K. and Ito, N. (2000). Shock-tube and modeling study of ethane pyrolysis and oxidation. Combust. Flame, 120, 245.

    Article  Google Scholar 

  • Hwang, J. Y., Lee, W., Kang, H. G. and Chung, S. H. (1998). Synergistic effect of ethylene-propane mixture on soot formation in laminar diffusion flames. Combust. Flame, 114, 370.

    Article  Google Scholar 

  • Hwang, J. Y. (1999). Soot Formation in Counterflow Diffusion Flames of Ethylene and Propane. Ph. D. Dissertation. Seoul National University. Korea.

    Google Scholar 

  • Hwang, J. Y. and Chung, S. H. (2001). Growth of soot particles in counterflow diffusion flames of ethylene. Combust. Flame, 125, 752.

    Article  Google Scholar 

  • Kang, K. T., Hwang, J. Y., Chung, S. H. and Lee, W. (1997). Soot zone structure and sooting limit in diffusion flames: Comparison of counterflow and co-flow flames. Combust. Flame, 109, 266.

    Article  Google Scholar 

  • Kee, R. J., Warnatz, J. and Miller, J. A. (1983). Sandia National Laboratories Report No. SAND 83-8209.

  • Kee, R. J., Rupley, F. M., Meeks, E. and Miller, J. A. (1996). Sandia National Laboratories Report No. SAND96-8216.

  • Lee, S. D. and Chung, S. H. (1994). On the structure and extinction of interacting lean methane/air premixed flames. Combust. Flame, 98, 80.

    Article  Google Scholar 

  • Lee, U. J., Oh, K. C. and Shin, H. D. (2005). Soot formation in inverse diffusion flames of diluted ethane. Fuel, 84, 543.

    Article  Google Scholar 

  • Marinov, N. M., Pitz, W. J., Westbrook, C. K., Castaldi, M. J. and Senkan, S. M. (1996). Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames. Combust. Sci. Tech. 116, 117, 211.

    Article  Google Scholar 

  • Marinov, N. M., Castaldi, M. J., Melius, C. F. and Tsang, W. (1997). Aromatic and polycyckic aromatic hydrocarbon formation in a premixed propane flame. Combust. Sci. Tech., 128, 295.

    Article  Google Scholar 

  • McEnally, C. S. and Pfefferle, L. D. (1997). Experimental assessment of naphthalene formation mechanisms in non-premixed flame. Combust. Sci. Tech., 128, 257.

    Article  Google Scholar 

  • McEnally, C. S. and Pfefferle, L. D. (1998). An experimental study in nonpremixed flames of hydrocarbon growth processes that involve five membered carbon rings. Combust. Sci. Tech., 131, 323.

    Article  Google Scholar 

  • McEnally, C. S. and Pfefferle, L. D. (2007). The effects of dimethyl ether and ethanol on benzeneand soot formation in ethylene nonpremixed flames. Proc. Combust. Inst., 31, 603.

    Article  Google Scholar 

  • Miller, J. A. and Melius, C. F. (1992). Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels. Combust. Flame, 91, 21.

    Article  Google Scholar 

  • Oh, K. C. and Shin, H. D. (2006). The effect of oxygen and carbon dioxide concentration on soot formation in nonpremixed flames. Fuel, 85, 615.

    Article  Google Scholar 

  • Rudder, R. R. and Bach, D. R. (1968). Rayleigh scattering of ruby-laser light by neutral gases. J. Optical Society of America, 58, 1260.

    Article  Google Scholar 

  • Smooke, M. D. (1982). Solution of burner stabilized premixed laminar flames by boundary value methods. J. Comput. Phys., 48, 72.

    Article  MATH  Google Scholar 

  • Smooke, M. D., Long, M. B., Connelly, B. C., Colket, M. B. and Hall, R. J. (2005). Soot formation in laminar flames. Combust. Flame, 143, 613.

    Article  Google Scholar 

  • Solomons, T. W. G. and Fryhle, C. B. (2000). Organic Chemistry. 7th Edn. John Wiley & Sons. New York.

    Google Scholar 

  • Vandsburger, U., Kennedy, I. and Glassman, I. (1984). Sooting counterflow diffusion flames with varying oxygen index. Combust. Sci. and Tech., 39, 263.

    Article  Google Scholar 

  • Yoon, S. S., Lee, S. M. and Chung, S. H. (2005). Effect of mixing methane, ethane, propane, and propene on the synergistic effect of PAH and soot formation in ethylenebase counterflow diffusion flames. Proc. Combust. Inst., 30, 1417.

    Article  Google Scholar 

  • Waldmann, L. and Schmitt, K. H. (1996). Thermophoresis and Diffusionphoresis of Aerosols. Aerosol Science (Davies, C. N. Edn). Academic Press. New York. 137–162.

    Google Scholar 

  • Wang, H., You, X., Joshi, A. V., Davis, S. G., Egolfopoulos, F. and Law, C. K. (2007). USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/USC_Mech_II.htm.

  • Zhao, B., Yang, Z., Li, Z., Johnston, M. V. and Wang, H. (2005) Particle size distribution function of incipient soot in laminar premixed ethylene flames: Effect of flame temperature. Proc. Combust. Inst., 30, 1441.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, B.C., Choi, S.K., Chung, S.H. et al. Experimental and numerical investigation of fuel mixing effects on soot structures in counterflow diffusion flames. Int.J Automot. Technol. 12, 183–191 (2011). https://doi.org/10.1007/s12239-011-0022-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-011-0022-z

Key Words

Navigation