Experimental and numerical investigation of fuel mixing effects on soot structures in counterflow diffusion flames

  • B. C. Choi
  • S. K. Choi
  • S. H. Chung
  • J. S. Kim
  • J. H. Choi
Article

Abstract

Experimental and numerical analyses of laminar diffusion flames were performed to identify the effect of fuel mixing on soot formation in a counterflow burner. In this experiment, the volume fraction, number density, and particle size of soot were investigated using light extinction/scattering systems. The experimental results showed that the synergistic effect of an ethylene-propane flame is appreciable. Numerical simulations showed that the benzene (C6H6) concentration in mixture flames was higher than in ethylene-base flames because of the increase in the concentration of propargyl radicals. Methyl radicals were found to play an important role in the formation of propargyl, and the recombination of propargyl with benzene was found to lead to an increase in the number density for cases exhibiting synergistic effects. These results imply that methyl radicals play an important role in soot formation, particularly with regard to the number density.

Key Words

Soot Counterflow Light extinction/scattering Synergistic effects Number density 

References

  1. Anderson, H., McEnally, C. S. and Pfefferle, L. D. (2000). Experimental study of naphathalene formation in nonpremixed flames doped with diacetylene, vinylacetylene, and other hydrocarbon: Evidence for pathways involving C4 specied. Proc. Combust. Inst., 28, 2577.CrossRefMATHGoogle Scholar
  2. Bogaard, M. P., Buckingham, A. D., Pierens, R. K. and White, A. H. (1978). Rayleigh scattering depolarization ratio and molecular polarizability anisotropy for gases. J. Chem. Society, Faraday Transactions, 74, 3008.CrossRefGoogle Scholar
  3. Bohren, C. F. and Huffman, D. R. (1983). Absorption and Scattering of Light by Small Particles. John Willey & Sons. New York.Google Scholar
  4. Castaldi, M. J., Marinov, N. M., Melius, C. F., Huang, J., Senkan, S. M., Pitz, W. J. and Westbrook, C. K. (1996). Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame. Symp.(Int.) Combust., 26, 693.CrossRefGoogle Scholar
  5. Choi, J. H., Fujita, O., Tsuiki, T., Kim, J. and Chung, S. H. (2005). A study of effect of oxygen concentration on the soot deposition process in a diffusion flame along a solid wall by in-situ observation in microgravity. JSME Int. J. (B), 48, 839.CrossRefGoogle Scholar
  6. Choi, J. H., Fujita, O., Tsuiki, T., Kim, J. and Chung, S. H. (2006). In-situ observation of the soot deposition process on a solid wall with a diffusion flame long the wall. JSME Int. J.(B), 49, 167.CrossRefGoogle Scholar
  7. Cole, J. A., Ederer, H. J., Stabel, U. and Howard, J. B. (1992). Formation mechanisms of aromatic compounds in aiiphatic flames. Combust. Flame, 56, 51–70.CrossRefGoogle Scholar
  8. D’Anna, A. and Violi, A. (1998). Kinetic model for the formation of aromatic hydrocarbons in premixed laminar flames. Symp.(Int.) Combust., 27, 425.CrossRefGoogle Scholar
  9. D’Anna, A., Violi, A. and D’Alessio, A. (2000). Modeling the rich combustion of aliphatic hydrocarbons. Combust. Flame, 121, 418.CrossRefGoogle Scholar
  10. Dobbins, R. A., Santoro, R. J. and Semerjian, H. G. (1984). Interpretation of optical measurement of soot in flames. Prog. Astronaut. Aeronaut., 92, 208–237.Google Scholar
  11. Dobbins, R. A., Santoro, R. J. and Semerjian, H. G. (1990). Analysis of light scattering form soot using optical cross sections for aggregates. Proc. Combust. Inst., 23, 1525.Google Scholar
  12. Frenklach, M., Clary, D. W., William, C., Gardiner, J. R. and Stephen, E. S. (1984). Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. 20th Proc. Combust. Inst., 20, 887.CrossRefGoogle Scholar
  13. Frenlach, M. and Warnatz, J. (1987). Detailing modeling of PAH profiles in a sooting low-pressure acetylene flame. Combust. Sci. Tech., 51, 265–283.CrossRefGoogle Scholar
  14. Frenlach, M. (1988). On the driving force of PAH production. Proc. Combust. Inst., 22, 1075.Google Scholar
  15. Fu, P. P., Belend, F. A. and Yang, S. K. (1980). Cyclopentapolycyclic aromatic hydrocarbons: Potential carcinogens and mutagens. Carcinogenesis, 1, 725–727.CrossRefGoogle Scholar
  16. Glassman, I. (1988). Soot formation in combustion processes. Proc. Combust. Inst., 22, 295.Google Scholar
  17. Hidaka, Y., Sato, K., Hoshikawa, H., Nishimori, T., Takahashi, R., Tanaka, H., Inami, K. and Ito, N. (2000). Shock-tube and modeling study of ethane pyrolysis and oxidation. Combust. Flame, 120, 245.CrossRefGoogle Scholar
  18. Hwang, J. Y., Lee, W., Kang, H. G. and Chung, S. H. (1998). Synergistic effect of ethylene-propane mixture on soot formation in laminar diffusion flames. Combust. Flame, 114, 370.CrossRefGoogle Scholar
  19. Hwang, J. Y. (1999). Soot Formation in Counterflow Diffusion Flames of Ethylene and Propane. Ph. D. Dissertation. Seoul National University. Korea.Google Scholar
  20. Hwang, J. Y. and Chung, S. H. (2001). Growth of soot particles in counterflow diffusion flames of ethylene. Combust. Flame, 125, 752.CrossRefGoogle Scholar
  21. Kang, K. T., Hwang, J. Y., Chung, S. H. and Lee, W. (1997). Soot zone structure and sooting limit in diffusion flames: Comparison of counterflow and co-flow flames. Combust. Flame, 109, 266.CrossRefGoogle Scholar
  22. Kee, R. J., Warnatz, J. and Miller, J. A. (1983). Sandia National Laboratories Report No. SAND 83-8209.Google Scholar
  23. Kee, R. J., Rupley, F. M., Meeks, E. and Miller, J. A. (1996). Sandia National Laboratories Report No. SAND96-8216.Google Scholar
  24. Lee, S. D. and Chung, S. H. (1994). On the structure and extinction of interacting lean methane/air premixed flames. Combust. Flame, 98, 80.CrossRefGoogle Scholar
  25. Lee, U. J., Oh, K. C. and Shin, H. D. (2005). Soot formation in inverse diffusion flames of diluted ethane. Fuel, 84, 543.CrossRefGoogle Scholar
  26. Marinov, N. M., Pitz, W. J., Westbrook, C. K., Castaldi, M. J. and Senkan, S. M. (1996). Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames. Combust. Sci. Tech. 116, 117, 211.CrossRefGoogle Scholar
  27. Marinov, N. M., Castaldi, M. J., Melius, C. F. and Tsang, W. (1997). Aromatic and polycyckic aromatic hydrocarbon formation in a premixed propane flame. Combust. Sci. Tech., 128, 295.CrossRefGoogle Scholar
  28. McEnally, C. S. and Pfefferle, L. D. (1997). Experimental assessment of naphthalene formation mechanisms in non-premixed flame. Combust. Sci. Tech., 128, 257.CrossRefGoogle Scholar
  29. McEnally, C. S. and Pfefferle, L. D. (1998). An experimental study in nonpremixed flames of hydrocarbon growth processes that involve five membered carbon rings. Combust. Sci. Tech., 131, 323.CrossRefGoogle Scholar
  30. McEnally, C. S. and Pfefferle, L. D. (2007). The effects of dimethyl ether and ethanol on benzeneand soot formation in ethylene nonpremixed flames. Proc. Combust. Inst., 31, 603.CrossRefGoogle Scholar
  31. Miller, J. A. and Melius, C. F. (1992). Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels. Combust. Flame, 91, 21.CrossRefGoogle Scholar
  32. Oh, K. C. and Shin, H. D. (2006). The effect of oxygen and carbon dioxide concentration on soot formation in nonpremixed flames. Fuel, 85, 615.CrossRefGoogle Scholar
  33. Rudder, R. R. and Bach, D. R. (1968). Rayleigh scattering of ruby-laser light by neutral gases. J. Optical Society of America, 58, 1260.CrossRefGoogle Scholar
  34. Smooke, M. D. (1982). Solution of burner stabilized premixed laminar flames by boundary value methods. J. Comput. Phys., 48, 72.CrossRefMATHGoogle Scholar
  35. Smooke, M. D., Long, M. B., Connelly, B. C., Colket, M. B. and Hall, R. J. (2005). Soot formation in laminar flames. Combust. Flame, 143, 613.CrossRefGoogle Scholar
  36. Solomons, T. W. G. and Fryhle, C. B. (2000). Organic Chemistry. 7th Edn. John Wiley & Sons. New York.Google Scholar
  37. Vandsburger, U., Kennedy, I. and Glassman, I. (1984). Sooting counterflow diffusion flames with varying oxygen index. Combust. Sci. and Tech., 39, 263.CrossRefGoogle Scholar
  38. Yoon, S. S., Lee, S. M. and Chung, S. H. (2005). Effect of mixing methane, ethane, propane, and propene on the synergistic effect of PAH and soot formation in ethylenebase counterflow diffusion flames. Proc. Combust. Inst., 30, 1417.CrossRefGoogle Scholar
  39. Waldmann, L. and Schmitt, K. H. (1996). Thermophoresis and Diffusionphoresis of Aerosols. Aerosol Science (Davies, C. N. Edn). Academic Press. New York. 137–162.Google Scholar
  40. Wang, H., You, X., Joshi, A. V., Davis, S. G., Egolfopoulos, F. and Law, C. K. (2007). USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/USC_Mech_II.htm.
  41. Zhao, B., Yang, Z., Li, Z., Johnston, M. V. and Wang, H. (2005) Particle size distribution function of incipient soot in laminar premixed ethylene flames: Effect of flame temperature. Proc. Combust. Inst., 30, 1441.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Automotive Engineers and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • B. C. Choi
    • 1
  • S. K. Choi
    • 2
  • S. H. Chung
    • 2
  • J. S. Kim
    • 3
  • J. H. Choi
    • 3
  1. 1.Environment & Plant TeamKorean Register of ShippingDaejeonKorea
  2. 2.Clean Combustion Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  3. 3.Division of Marine System EngineeringKorea Maritime UniversityBusanKorea

Personalised recommendations