Skip to main content
Log in

Multiaxial stress creep rupture mechanisms of AZ31 magnesium alloy

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

The maximum principal stresses, von Mises effective stresses and principal facet stresses at the time of creep rupture were compared in uniaxial, biaxial, and triaxial stress states for AZ31 magnesium alloy. The creep rupture of this alloy was experimentally controlled by cavitation, which was the result of a low damage tolerance, λ. Creep deformation could be correlated with the von Mises effective stress parameter. The failure-mechanism control parameter governing the stress state coincided with the experimental results of the rupture of the materials under multiaxial stress states. Finally, the theoretical prediction based on constrained cavity growth and continuous nucleation agreed with the experimental rupture data to within a factor of three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cane, B. J. (1982). Creep damage accumulation and fracture under multiaxial stresses. Advances in Fracture Research (Fracture 81), 3, 1285–1293, Oxford, Pergamon Press.

    Google Scholar 

  • Dyson, B. F. (1976). Constraints on diffusional cavity growth rates. Mater Sci., 10, 349–353.

    Google Scholar 

  • Dyson, B. F. and Leckie, F. A. (1988). Physically based modeling of remanent creep life. Mater Sci Eng A, 103, 111–114.

    Article  Google Scholar 

  • Hayhurst, D. R. (1972). Creep rupture under multi-axial states of stress. J. Mech. Phys. Solids, 20, 381–390.

    Article  Google Scholar 

  • Hayhurst, D. R., Leckie, F. A. and Henderson, J. T. (1977). Design of notched bars for creep-rupture testing under tri-axial stresses. Int. J. Mech. Sci., 19, 147–159.

    Article  Google Scholar 

  • Huddleston, R. L. (1985). An improved multiaxial creeprupture strength criterion. J. Pressure Vessel Technol., 107, 421–429.

    Article  Google Scholar 

  • Isshiki, K., Horita, Z., Fujinami, T., Sano, T., Nemoto, M., Ma, Y. and Langdon, T. G. (1997). A new miniature mechanical testing procedure: Application to intermetallics. Metal. Mater. Trans. A, 28A, 2577–2582.

    Article  Google Scholar 

  • Jonson, N. L. and Earthman, J. C. (1994). Numerical analysis of primary creep deformation in a novel double shear specimen geometry. J. Testing Evaluation, JTEVA, 22, 111–116.

    Article  Google Scholar 

  • Kim, H. K., Mohamed, F. A. and Earthman, J. C. (1991). A novel specimen geometry for double shear creep experiments. J. Testing. Evaluation, 19, 93–96.

    Article  Google Scholar 

  • Kwon, O., Thomas, C. W. and Knowles, D. (2004). Multiaxial stress rupture behaviour and stress-state sensitivity of creep damage distribution in Durehete 1055 and 2.25Cr1Mo steel. Int. J. Pressure Vessel and Piping, 81, 535–542.

    Article  Google Scholar 

  • Luo, A. A. (2004). Recent magnesium alloy development for elevated temperature applications. Int. Mat. Reviews., 49, 13–30.

    Article  Google Scholar 

  • Nix, W. D., Earthman, J. C., Eggeler, G. and Ilschner, B. (1989). The principal facet stress as a parameter for predicting creep rupture under multiaxial stresses. Acta Metall., 37, 1067–1077.

    Article  Google Scholar 

  • Riedel, H. (1987). Fracture at High Temperatures. Berlin. Springer.

    Google Scholar 

  • Spigarelli, S., Cabibbo, M., Evangelista, E., Talianker, M. and Ezersky, V. (2000). Analysis of the creep behaviour of a thixoformed AZ91 magnesium alloy. Mat. Sci. Eng. A, 289, 172–181.

    Article  Google Scholar 

  • Vagarali, S. S. and Langdon, T. G. (1982). Deformation mechanisms in h.c.p. metals at elevated temperatures-II. Creep behavior of a Mg-0.8% Al solid solution alloy. Acta Metall, 30, 1157–1170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H., Kim, H.K. Multiaxial stress creep rupture mechanisms of AZ31 magnesium alloy. Int.J Automot. Technol. 10, 365–372 (2009). https://doi.org/10.1007/s12239-009-0042-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-009-0042-0

Key Words

Navigation