Skip to main content

Advertisement

Log in

Salt Marsh Morphological Evolution Under Plant Species Invasion

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Species invasion in salt marsh wetlands is known to disturb the balance of biotic and abiotic ecosystems (e.g., changing material exchange cycles and community structure). However, its influence on the morphological evolution of salt marshes is not yet understood in depth. This study investigates the long-term temporal and spatial distributions of an invasive plant (Spartina alterniflora) and its morphological characteristics in the Yangtze Estuary by remote sensing imagery interpretation, tidal creek extraction, regional statistical analysis, and proximity analysis. The invaded site shows an area of Spartina alterniflora with a 35-fold increase from the start to the end of its initiation phase; it is the second biggest species in the study area. It is found that species invasion not only limited the expansion of native pioneer vegetation but also changed bio-geomorphic feedback loops. With the influence of plant invasion, median tidal creek lengths decreased and the median tidal creek sinuosity ratio remained stable, between 1.06 and 1.07 in the subarea. The method used here is adaptable to other salt marshes. The findings from this study can provide practical guidance for the restoration of native salt marshes in the estuary and thus control the spread of invasive species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data for this publication is available upon request from the corresponding author.

References

  • Allen, J.R.L. 2000. Morphodynamics of holocene salt marshes: A review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews 19: 1839–1840.

    Article  Google Scholar 

  • An, S.Q., B.H. Gu, C.F. Zhou, Z.S. Wang, Z.F. Deng, Y.B. Zhi, and Y.H. Liu. 2007. Spartina invasion in China: implications for invasive species management and future research. Weed Research 47: 183–191.

    Article  Google Scholar 

  • Ayres, D.R., D.L. Smith, K. Zaremba, S. Klohr, and D.R. Strong. 2004. Spread of exotic cordgrasses and hybrids (Spartina sp.) in the tidal marshes of San Francisco Bay, California, USA. Biological Invasions 6: 221–231.

    Article  Google Scholar 

  • Bij de Vaate, I., M.Z.M. Brückner, M.G. Kleinhans, and C. Schwarz. 2020. On the impact of salt marsh pioneer species-assemblages on the emergence of intertidal channel networks. Water Resources Research 56: e2019WR025942.

    Article  Google Scholar 

  • Bouma, T.J., M.B. De Vries, E. Low, G. Peralta, I.C. Tánczos, J. van de Koppel, and P.M.J. Herman. 2005. Trade-offs related to ecosystem engineering: A case study on stiffness of emerging macrophytes. Ecology 86: 2187–2199.

    Article  Google Scholar 

  • Breiman, L. 2001. Random forests. Machine Learning 45: 5–32.

    Article  Google Scholar 

  • Cahoon, D. 2009. Coastal wetlands an integrated ecosystem approach.

  • Callaway, J.C., and M.N. Josselyn. 1992. The introduction and spread of smooth cordgrass (Spartina alterniflora) in South San Francisco Bay. Estuaries 15: 218–226.

    Article  Google Scholar 

  • Chen, Z., B. Li, Y. Zhong, and J. Chen. 2004. Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences. Hydrobiologia 528: 99–106.

    Article  Google Scholar 

  • Chirol, C., I. Haigh, N. Pontee, C. Thompson, and S. Gallop. 2018. Parametrizing tidal creek morphology in mature saltmarshes using semi-automated extraction from lidar. Remote Sensing of Environment 209: 291–311.

    Article  Google Scholar 

  • D’Alpaos, A. 2011. The mutual influence of biotic and abiotic components on the long-term ecomorphodynamic evolution of salt-marsh ecosystems. Geomorphology 126: 269–278.

    Article  Google Scholar 

  • D’Alpaos, A., S. Lanzoni, S.M. Mudd, and S. Fagherazzi. 2006. Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuarine Coastal and Shelf Science 69: 311–324.

    Article  Google Scholar 

  • Dawei, W., W. Zhenqi, H. Wei, L. Changhu, and C. Pan. 2023. The native reed-specific bird, reed parrotbill, has been detected in exotic smooth cordgrass. Ecology and Evolution 13: e10417.

    Article  Google Scholar 

  • Fagherazzi, S., and D.J. Furbish. 2001. On the shape and widening of salt marsh creeks. Journal of Geophysical Research: Oceans 106: 991–1003.

    Article  Google Scholar 

  • Fan, Y., D. Zhou, Y. Ke, Y. Wang, Q. Wang, and L. Zhang. 2020. Quantifying the correlated spatial distributions between tidal creeks and coastal wetland vegetation in the Yellow River Estuary. Wetlands 40: 2701–2711.

    Article  Google Scholar 

  • Fei, S., J. Phillips, and M. Shouse. 2014. Biogeomorphic impacts of invasive species. Annual Review of Ecology, Evolution, and Systematics 45: 69–87.

    Article  Google Scholar 

  • Feng, J., J. Guo, Q. Huang, J. Jiang, G. Huang, Z. Yang, and G. Lin. 2014. Changes in the community structure and diet of benthic macrofauna in invasive Spartina alterniflora wetlands following restoration with native mangroves. Wetlands 34: 673–683.

    Article  Google Scholar 

  • Fitch, R., T. Theodose, and M. Dionne. 2009. Relationships among upland development, nitrogen, and plant community composition in a maine salt marsh. Wetlands 29: 1179–1188.

    Article  Google Scholar 

  • Frenkel, R.E., and T.R. Boss. 1988. Introduction, establishment and spread of Spartina patens on Cox Island, Siuslaw Estuary, Oregon. Wetlands 8: 33–49.

    Article  Google Scholar 

  • Ge, Z., H. Cao, and L. Zhang. 2013. A process-based grid model for the simulation of range expansion of Spartina alterniflora on the coastal saltmarshes in the Yangtze Estuary. Ecological Engineering 58: 105–112.

    Article  Google Scholar 

  • Geng, L., A. D'Alpaos, A. Sgarabotto, Z. Gong, and S. Lanzoni. 2021. Intertwined eco-morphodynamic evolution of salt marshes and emerging tidal channel networks. Water Resources Research 57.

  • Gong, Z., K. Mou, Q. Wang, H. Qiu, C. Zhang, and D. Zhou. 2021. Parameterizing the Yellow River Delta tidal creek morphology using automated extraction from remote sensing images. Science of the Total Environment 769: 144572.

    Article  CAS  Google Scholar 

  • Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202: 18–27.

    Article  Google Scholar 

  • Goss-Custard, J.D., and M.E. Moser. 1988. Rates of change in the numbers of Dunlin, Calidris alpina, wintering in British Estuaries in relation to the spread of Spartina anglica. Journal of Applied Ecology 25: 95–109.

    Article  Google Scholar 

  • Horton, R.E. 1945. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. GSA Bulletin 56: 275–370.

    Article  Google Scholar 

  • Huang, H., and L. Zhang. 2007. A study of the population dynamics of Spartina alterniflora at Jiuduansha shoals, Shanghai, China. Ecological Engineering 29: 164–172.

    Article  Google Scholar 

  • Hubbard, J.C.E., and T.R. Partridge. 1981. Tidal immersion and the growth of Spartina anglica marshes in the Waihopai River Estuary, New Zealand. New Zealand Journal of Botany 19: 115–121.

    Article  Google Scholar 

  • Jimenez, K.L., G. Starr, C.L. Staudhammer, J.L. Schedlbauer, H.W. Loescher, S.L. Malone, and S.F. Oberbauer. 2012. Carbon dioxide exchange rates from short- and long-hydroperiod Everglades freshwater marsh. Journal of Geophysical Research: Biogeosciences 117.

  • Kakeh, N., G. Coco, and M. Marani. 2016. On the morphodynamic stability of intertidal environments and the role of vegetation. Advances in Water Resources 93: 303–314.

    Article  Google Scholar 

  • Kearney, W.S., and S. Fagherazzi. 2016. Salt marsh vegetation promotes efficient tidal channel networks. Nature Communications 7: 12287.

    Article  CAS  Google Scholar 

  • Laengner, M.L., K. Siteur, and D. van der Wal. 2019. Trends in the seaward extent of saltmarshes across Europe from long-term satellite data. Remote Sensing.

  • Lao, C., P. Xin, Y. Zuo, and H. Cheng. 2022. Effect of fractional vegetation cover on the evolution of tidal creeks of the Jiuduansha shoal in Yangtze River Estuary (China) during 1996–2020. Advances in Water Science 33: 15–26.

    Google Scholar 

  • Li, B., C. Liao, X. Zhang, H. Chen, Q. Wang, Z. Chen, and J. Chen. 2009. Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecological Engineering 35: 511–520.

    Article  CAS  Google Scholar 

  • Ma, Z., X. Gan, C. Choi, K. Jing, S. Tang, B. Li, and J. Chen. 2007. Wintering bird communities in newly-formed wetland in the Yangtze River estuary. Ecological Research 22: 115–124.

    Article  Google Scholar 

  • Mao, D., M. Liu, Z. Wang, L. Li, W. Man, M. Jia, and Y. Zhang. 2019. Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: Spatiotemporal patterns and human prevention. Sensors 19: 2308.

    Article  Google Scholar 

  • Marani, M., S. Lanzoni, D. Zandolin, G. Seminara, and A. Rinaldo. 2002. Tidal meanders. Water Resources Research 38: 7–1.

    Article  Google Scholar 

  • Mcleod, E., G.L. Chmura, S. Bouillon, R. Salm, M. Björk, C.M. Duarte, . . . B.R. Silliman. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9: 552–560.

    Article  Google Scholar 

  • Neubauer, S.C. 2008. Contributions of mineral and organic components to tidal freshwater marsh accretion. Estuarine, Coastal and Shelf Science 78: 78–88.

    Article  Google Scholar 

  • Nyman, J.A., R.J. Walters, R.D. Delaune, and W.H. Patrick. 2006. Marsh vertical accretion via vegetative growth. Estuarine, Coastal and Shelf Science 69: 370–380.

    Article  Google Scholar 

  • Qi, M., T. Sun, H. Zhang, M. Zhu, W. Yang, D. Shao, and A. Voinov. 2017. Maintenance of salt barrens inhibited landward invasion of Spartina species in salt marshes. Ecosphere 8: e01982.

    Article  Google Scholar 

  • Quan, W., L. Shi, and Y. Chen. 2011. Comparison of nekton use for cordgrass Spartina alterniflora and Bulrush scirpus mariqueter marshes in the Yangtze River Estuary, China. Estuaries and Coasts 34: 405–416.

    Article  CAS  Google Scholar 

  • Quan, W., H. Zhang, Z. Wu, S. Jin, F. Tang, and J. Dong. 2016. Does invasion of Spartina alterniflora alter microhabitats and benthic communities of salt marshes in Yangtze River estuary? Ecological Engineering 88: 153–164.

    Article  Google Scholar 

  • Rosso, P.H., S.L. Ustin, and A. Hastings. 2006. Use of lidar to study changes associated with Spartina invasion in San Francisco Bay marshes. Remote Sensing of Environment 100: 295–306.

    Article  Google Scholar 

  • Schwarz, C., Q.H. Ye, D. van der Wal, L.Q. Zhang, T. Bouma, T. Ysebaert, and P.M.J. Herman. 2014. Impacts of salt marsh plants on tidal channel initiation and inheritance. Journal of Geophysical Research-Earth Surface 119: 385–400.

    Article  Google Scholar 

  • Schwarz, C., T. Ysebaert, W. Vandenbruwaene, S. Temmerman, L. Zhang, and P.M.J. Herman. 2016. On the potential of plant species invasion influencing bio-geomorphologic landscape formation in salt marshes. Earth Surface Processes and Landforms 41: 2047–2057.

    Article  Google Scholar 

  • Sheehan, M.R., and J.C. Ellison. 2014. Intertidal morphology change following Spartina anglica introduction, Tamar Estuary, Tasmania. Estuarine, Coastal and Shelf Science 149: 24–37.

    Article  Google Scholar 

  • Strayer, D.L., V.T. Eviner, J.M. Jeschke, and M.L. Pace. 2006. Understanding the long-term effects of species invasions. Trends in Ecology & Evolution 21: 645–651.

    Article  Google Scholar 

  • Sun, L., D. Shao, T. Xie, W. Gao, X. Ma, Z. Ning, and B. Cui. 2020. How does Spartina alterniflora invade in salt marsh in relation to tidal channel networks? patterns and processes. Remote Sensing 12: 2983.

    Article  Google Scholar 

  • Theoharides, K.A., and J.S. Dukes. 2007. Plant invasion across space and time: Factors affecting nonindigenous species success during four stages of invasion. New Phytologist 176: 256–273.

    Article  Google Scholar 

  • Uylings, H., G. Smit, and W. Veltman. 1975. Ordering methods in quantitative analysis of branching structures of dendritic trees. Advances in Neurology 12: 347–354.

    CAS  Google Scholar 

  • van Hulzen, J.B., J. van Soelen, and T.J. Bouma. 2007. Morphological variation and habitat modification are strongly correlated for the autogenic ecosystem engineer Spartina anglica (common cordgrass). Estuaries and Coasts 30: 3–11.

    Article  Google Scholar 

  • Vandenbruwaene, W., S. Temmerman, T.J. Bouma,P.C. Klaassen, M.B. de Vries, D.P. Callaghan, . . . P. Meire. 2011. Flow interaction with dynamic vegetation patches: implications for biogeomorphic evolution of a tidal landscape. Journal of Geophysical Research: Earth Surface 116.

  • Wang, S., F. Chen, Y. Meng, and Q. Zhu. 2021. Spatiotemporal distribution characteristics of nutrients in the drowned tidal inlet under the influence of tides: A case study of Zhanjiang Bay, China. International Journal of Environmental Research and Public Health 18: 2089.

    Article  CAS  Google Scholar 

  • Wang, F., C.J. Sanders, I. Santos, J. Tang, M. Schuerch, M.L. Kirwan, . . . Z.A. Li. 2020. Global blue carbon accumulation in tidal wetlands increases with climate change. National Science Review 8.

  • Wu, Y., J. Liu, G. Yan, J. Zhai, L. Cong, L. Dai, and M. Zhang. 2020. The size and distribution of tidal creeks affects salt marsh restoration. Journal of Environmental Management 259: 110070.

    Article  Google Scholar 

  • Xiao, D., L. Zhang, and Z. Zhu. 2010. The range expansion patterns of Spartina alterniflora on salt marshes in the Yangtze Estuary, China. Estuarine, Coastal and Shelf Science 88: 99–104.

    Article  Google Scholar 

  • Xin, P., A. Wilson, C. Shen, Z. Ge, K.B. Moffett, I.R. Santos, and D.A. Barry. 2022. Surface water and groundwater interactions in salt marshes and their impact on plant ecology and coastal biogeochemistry. Reviews of Geophysics 60: 1–54.

    Article  Google Scholar 

  • Yang, S., H. Li, T. Ysebaert, T.J. Bouma, W. Zhang, Y. Wang, and P. Ding. 2008. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: on the role of physical and biotic controls. Estuarine, Coastal and Shelf Science 77: 657–671.

    Article  Google Scholar 

  • Yang, Z., A. Finotello, G. Goodwin, C. Gao, S.M. Mudd, D. Lague, and A. D’Alpaos. 2022. Seaward expansion of salt marshes maintains morphological self-similarity of tidal channel networks. Journal of Hydrology 615:128733.

    Article  Google Scholar 

  • Zhao, B., Y. Liu, W. Xu, Y. Liu, J. Sun, and L. Wang. 2019a. Morphological characteristics of tidal creeks in the central coastal region of Jiangsu, China, using LiDAR. Remote Sensing 11: 2426.

    Article  Google Scholar 

  • Zhao, L., C. Xu, Z. Ge, J. van de Koppel, and Q. Liu. 2019b. The shaping role of self-organization: Linking vegetation patterning, plant traits and ecosystem functioning. Proceedings of the Royal Society b: Biological Sciences 286: 20182859.

    Article  Google Scholar 

  • Zhao, L., P. Xin, H. Cheng, and A. Chu. 2022. Combined effects of river discharge regulation and estuarine morphological evolution on salinity dynamics in Yangtze Estuary, China. Estuarine, Coastal and Shelf Science 276: 108002.

    Article  CAS  Google Scholar 

  • Zhu, Z., L. Zhang, N. Wang, C. Schwarz, and T. Ysebaert. 2012. Interactions between the range expansion of saltmarsh vegetation and hydrodynamic regimes in the Yangtze Estuary, China. Estuarine, Coastal and Shelf Science 96: 273–279.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Shanghai Estuarine and Coastal Research Centre for furnishing bathymetry data of the Yangtze Estuary. The authors would also like to thank the Ministry of Transport in Shanghai Estuarine and Coastal Science Research Centre for their support in the data collection and field investigation.

Funding

This study was supported by the National Natural Science Foundation of China (U2040204), the Jiangsu Provincial Natural Science Foundation of China (BK2020020), and the Open Research Fund of Key Laboratory of Estuarine & Coastal Engineering, Ministry of Transport (KLECE202301).

Author information

Authors and Affiliations

Authors

Contributions

XW: conceptualization, data analysis, and writing—original draft. XP: resources, supervision, revise and editing. HZ: conceptualization, supervision, revision and editing; LZ: field investigation and revision of the manuscript. CL: preprocess of remote image and editing. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Pei Xin.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Communicated by Meagan Eagle

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 423 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, H., Zhan, L. et al. Salt Marsh Morphological Evolution Under Plant Species Invasion. Estuaries and Coasts 47, 949–962 (2024). https://doi.org/10.1007/s12237-024-01346-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-024-01346-7

Keywords

Navigation