Skip to main content

Advertisement

Log in

High-Resolution In Situ Characterization of the Hydrochemical Variability Along the Fluvio-marine Transition of the Río de la Plata Estuary, Argentina

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Estuaries are characterized by steep biogeochemical gradients that are often overlooked by discrete water sampling which is especially critical for large ecosystems like the Río de la Plata estuary (RLP). To overcome this limitation, high-resolution in situ measurements of salinity, temperature, pH, turbidity, chlorophyll a (Chl-a), colored dissolved organic matter (CDOM) complemented by laboratory analysis of Chl-a and suspended particle (SPM) grain size distribution were employed to characterize the fluvio-marine transition along seven legs covering 1500 km in the RLP. In situ records performed each 400 m permitted to detect the anthropogenic discharge of CDOM in the upper freshwater Buenos Aires–La Plata metropolitan sector (1.7–3.6 mg C l−1) and the sharp turbidity increase at the beginning of the saline intrusion (S: 0.2–2) resulting in a consistent turbidity maximum zone formation (TMZ: 180–350 NTU). High-resolution data at the TMZ also revealed a significant positive covariation of Chl-a with turbidity indicating the retention of freshwater algae. The relative increase of phaeopigments in the South TMZ sector supported the detrital signature of the Paraná River load contrasting with the less turbid and fresher signal of the North corridor influenced by the Uruguay River flow. CDOM showed an opposite pattern and decreased with turbidity at the TMZ suggesting partial colloid precipitation from the surface’s 50-cm layer sampled by the boat, followed by a rapid recovery and a linear decrease with salinity (2.9 ± 0.7 to 0.3 ± 0.4 mg C l−1). Turbidity and SPM grain size measurements also reflected the North–South asymmetry of the estuary with lower turbidities enriched in finer fractions along the Northern corridor. A consistent transport pathway of partially mixed, turbid waters enriched in Chl-a, CDOM, and clays concentrated in the TMZ with intermediate salinities was traced downstream along the South shore as a significant transport pathway of suspended solids to the sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

For data availability requests, please contact lead author.

References

  • Abril, G., M. Nogueira, H. Etcheber, G. Cabeçadas, E. Lemaire, and M.J. Brogueira. 2002. Behaviour of organic carbon in nine contrasting european estuaries. Estuarine, Coastal and Shelf Science 54: 241–262. https://doi.org/10.1006/ecss.2001.0844.

    Article  ADS  CAS  Google Scholar 

  • Acha, M.E., H. Mianzan, R. Guerrero, J. Carreto, D. Giberto, N. Montoya, M. Carignan, et al. 2008. An overview of physical and ecological processes in the Rio de la Plata Estuary. Continental Shelf Research 28: 1579–1588. https://doi.org/10.1016/j.csr.2007.01.031.

    Article  ADS  Google Scholar 

  • Aubriot, L., B. Zabaleta, F. Bordet, D. Sienra, J. Risso, M. Achkar, and A. Somma. 2020. Assessing the origin of a massive cyanobacterial bloom in the Río de la Plata (2019): Towards an early warning system. Water Research 181: 115944. https://doi.org/10.1016/j.watres.2020.115944. Elsevier Ltd.

    Article  CAS  PubMed  Google Scholar 

  • Bazán, J., and L. Janiot. 1991. Zona de máxima turbidez y su relación con otros parámetros del Río de la Plata. Informe técnico N° 65/91. Servicio de Hidrografía Naval. Departamento de Oceanografía.

  • Berasategui, A.D., E.M. Acha, and N.C. Fernández Araoz. 2004. Spatial patterns of ichthyoplankton assemblages in the Río de la Plata Estuary (Argentina-Uruguay). Estuarine, Coastal and Shelf Science 60: 599–610. https://doi.org/10.1016/j.ecss.2004.02.015.

    Article  ADS  Google Scholar 

  • Bianchi, T.S. 2007. Biogeochemistry of estuaries. Oxford: Oxford University Press.

    Google Scholar 

  • Bodnariuk, N., C. G. Simionato, M. Osman, and M. Saraceno. 2021. The Río de la Plata plume dynamics over the Southwestern Atlantic Continental Shelf and its link with the large scale atmospheric variability on interannual timescales. Continental Shelf Research 212. https://doi.org/10.1016/j.csr.2020.104296.

  • Bouchez, J., V. Galy, R.G. Hilton, J.Ô. Gaillardet, P. Moreira-Turcq, M.A. Pérez, C. France-Lanord, and L. Maurice. 2014. Source, transport and fluxes of Amazon River particulate organic carbon: Insights from river sediment depth-profiles. Geochimica Et Cosmochimica Acta 133: 280–298. https://doi.org/10.1016/j.gca.2014.02.032.

    Article  ADS  CAS  Google Scholar 

  • Callahan, J., M. Dai, R.F. Chen, X. Li, Z. Lu, and W. Huang. 2004. Distribution of dissolved organic matter in the Pearl River Estuary, China. Marine Chemistry 89: 211–224. https://doi.org/10.1016/j.marchem.2004.02.013.

    Article  CAS  Google Scholar 

  • Calliari, D., M. Gómez, and N. Gómez. 2005. Biomass and composition of the phytoplankton in the Río de la Plata: Large-scale distribution and relationship with environmental variables during a spring cruise. Continental Shelf Research 25: 197–210. https://doi.org/10.1016/j.csr.2004.09.009.

    Article  ADS  Google Scholar 

  • Camiolo, M.D., E. Cozzolino, C.G. Simionato, M.C. Hozbor, and C.Á. Lasta. 2016. Evaluating the performance of the OC5 algorithm of IFREMER for the highly turbid waters of Río de la Plata. Brazilian Journal of Oceanography 64: 19–28. https://doi.org/10.1590/S1679-87592016098506401.

    Article  Google Scholar 

  • CAMMESA (Wholesale Electricity Market Administration Company), 2022. https://cammesaweb.cammesa.com/. (accessed in September 2022).

  • Carreto, J.I., N. Montoya, R. Akselman, M.O. Carignan, R.I. Silva, and D.A. Cucchi Colleoni. 2008. Algal pigment patterns and phytoplankton assemblages in different water masses of the Río de la Plata maritime front. Continental Shelf Research 28: 1589–1606. https://doi.org/10.1016/j.csr.2007.02.012.

    Article  ADS  Google Scholar 

  • Cataldo, D., J.C. Colombo, D. Boltovskoy, C. Bilos, and P. Landoni. 2001. Environmental toxicity assessment in the Paraná river delta (Argentina): Simultaneous evaluation of selected pollutants and mortality rates of Corbicula fluminea (Bivalvia) early juveniles. Environmental Pollution 112: 379–389. https://doi.org/10.1016/S0269-7491(00)00145-7.

    Article  CAS  PubMed  Google Scholar 

  • Chen, R.F., and G.B.B. Gardner. 2004. High-resolution measurements of chromophoric dissolved organic matter in the Mississippi and Atchafalaya River plume regions. Marine Chemistry 89: 103–125. https://doi.org/10.1016/j.marchem.2004.02.026.

    Article  CAS  Google Scholar 

  • Chen, Z., Y. Li, and J. Pan. 2004. Distributions of colored dissolved organic matter and dissolved organic carbon in the Pearl River Estuary, China. Continental Shelf Research 24: 1845–1856. https://doi.org/10.1016/j.csr.2004.06.011.

    Article  ADS  Google Scholar 

  • Cloern, J.E. 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Continental Shelf Research 7: 1367–1381. https://doi.org/10.1016/0278-4343(87)90042-2.

    Article  ADS  Google Scholar 

  • Colombo, J.C., C.N. Skorupka, C. Bilos, L. Tatone, N. Cappelletti, M.C. Migoya, M. Astoviza, and E. Speranza. 2015. Seasonal and inter-annual variability of water quality in the Uruguay River, Argentina. Hydrological Sciences Journal 60: 1155–1163. https://doi.org/10.1080/02626667.2014.905690.

    Article  CAS  Google Scholar 

  • Dai, M., X. Guo, W. Zhai, L. Yuan, B. Wang, L. Wang, P. Cai, T. Tang, and W.-J. Cai. 2006. Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought. Marine Chemistry 102: 159–169. https://doi.org/10.1016/j.marchem.2005.09.020.

    Article  CAS  Google Scholar 

  • Damme, S., E. Van, T. Struyf, T. Maris, F. Ysebaert, M. Dehairs, C. Heip. Tackx, and P. Meire. 2005. Spatial and temporal patterns of water quality along the estuarine salinity gradient of the Scheldt estuary (Belgium and The Netherlands): Results of an integrated monitoring approach. Hydrobiologia 540: 29–45. https://doi.org/10.1007/s10750-004-7102-2.

    Article  CAS  Google Scholar 

  • de Mahiques, M. M., R. C. L. Figueira, S. H. de M. Sousa, R. F. dos Santos, P. A. de L. Ferreira, B. S. M. Kim, S. Cazzoli y Goya, M. C. S. N. de Matos, and M. C. Bícego. 2020. Sedimentation on the southern Brazilian shelf mud depocenters: Insights on potential source areas. Journal of South American Earth Sciences 100. Elsevier: 102577. https://doi.org/10.1016/j.jsames.2020.102577.

  • Degens, E., S. Kempe, and J. Richey. 1991. Summary: Biogeochemistry of major world rivers (SCOPE 42). In Biogeochemistry of major world rivers, ed. E. Degens, S. Kempe, and J. Richey, 42:323–347. New York: John Wiley & Sons.

  • Depetris, P.J., and S. Kempre. 1993. Carbon dynamics and sources in the Parani River. Limnology and Oceanography 38: 382–395. https://doi.org/10.4319/lo.1993.38.2.0382.

    Article  ADS  CAS  Google Scholar 

  • Depetris, P. J., and A. I. Pasquini. 2007. The geochemistry of the Paraná River: An overview. In The middle Paraná River: Limnology of a subtropical wetland, ed. M. H. Iriondo, J. C. Paggi, and M. J. Parma, 143–174. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-70624-3_6.

  • Dogliotti, A. I., J. I. Gossn, C. Gonzalez, L. Yema, M. Sanchez, and I. L. O’Farrell. 2021. Evaluation of Multi- and Hyper- Spectral Chl-A Algorithms in the RÍo De La Plata Turbid Waters During a Cyanobacteria Bloom. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 7442–7445. IEEE. https://doi.org/10.1109/IGARSS47720.2021.9553148.

  • Domingues, R. B., T. P. Anselmo, A. B. Barbosa, U. Sommer, and H. M. Galvão. 2011. Light as a driver of phytoplankton growth and production in the freshwater tidal zone of a turbid estuary. Estuarine, Coastal and Shelf Science 91. Elsevier Ltd: 526–535. https://doi.org/10.1016/j.ecss.2010.12.008.

  • Drake, T. W., J. D. Hemingway, M. R. Kurek, B. Peucker-Ehrenbrink, K. A. Brown, R. M. Holmes, V. Galy, et al. 2021. The pulse of the Amazon: Fluxes of dissolved organic carbon, nutrients, and ions from the world’s largest river. Global Biogeochemical Cycles 35. https://doi.org/10.1029/2020GB006895.

  • Dyer, K. R. 1988. Fine sediment particle transport in estuaries. In Physical processes in estuaries, ed. J. Dronkers and W. van Leussen, 295–310. Berlin, Heidelberg: Springer Berlin Heidelberg.

  • Fisher, T.R., L.W. Harding, D.W. Stanley, and L.G. Ward. 1988. Phytoplankton, nutrients, and turbidity in the Chesapeake, Delaware, and Hudson estuaries. Estuarine, Coastal and Shelf Science 27: 61–93. https://doi.org/10.1016/0272-7714(88)90032-7.

    Article  ADS  CAS  Google Scholar 

  • Framiñan, M.B., and O.B. Brown. 1996. Study of the Río de la Plata turbidity front, Part 1: Spatial and temporal distribution. Continental Shelf Research 16: 1259–1282. https://doi.org/10.1016/0278-4343(95)00071-2.

    Article  ADS  Google Scholar 

  • Galy, V., C. France-Lanord, and B. Lartiges. 2008. Loading and fate of particulate organic carbon from the Himalaya to the Ganga-Brahmaputra delta. Geochimica et Cosmochimica Acta 72: 1767–1787. https://doi.org/10.1016/j.gca.2008.01.027.

    Article  ADS  CAS  Google Scholar 

  • Giberto, D.A., C.S. Bremec, E.M. Acha, and H. Mianzan. 2004. Large-scale spatial patterns of benthic assemblages in the SW Atlantic: The Rı́o de la Plata estuary and adjacent shelf waters. Estuarine, Coastal and Shelf Science 61: 1–13. https://doi.org/10.1016/j.ecss.2004.03.015.

    Article  ADS  CAS  Google Scholar 

  • Gómez, N., P.R. Hualde, M. Licursi, and D.E. Bauer. 2004. Spring phytoplankton of Rı́o de la Plata: A temperate estuary of South America. Estuarine, Coastal and Shelf Science 61: 301–309. https://doi.org/10.1016/j.ecss.2004.05.007.

    Article  ADS  CAS  Google Scholar 

  • Guerrero, R.A., E.M. Acha, M.B. Framiñán, and C.A. Lasta. 1997. Physical oceanography of the Río de la Plata Estuary, Argentina. Continental Shelf Research 17: 727–742. https://doi.org/10.1016/S0278-4343(96)00061-1.

    Article  ADS  Google Scholar 

  • Hansen, A.M., T.E.C. Kraus, B.A. Pellerin, J.A. Fleck, B.D. Downing, and B.A. Bergamaschi. 2016. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnology and Oceanography 61: 1015–1032. https://doi.org/10.1002/lno.10270.

    Article  ADS  Google Scholar 

  • Hedges, J.I., W.A. Clark, P.D. Quay, J.E. Richey, A.H. Devol, and M. Santos. 1986. Compositions and fluxes of particulate organic material in the Amazon River. Limnology and Oceanography 31: 717–738. https://doi.org/10.4319/lo.1986.31.4.0717.

    Article  ADS  CAS  Google Scholar 

  • Heguilor, S., E. D. Speranza, L. M. Tatone, C. N. Skorupka, M. C. Migoya, and J. C. Colombo. 2023. High-resolution multivariate analysis of the hydrochemical signature of water corridors in the upper Río de la Plata estuary, Argentina. Water research 229. Elsevier Ltd: 119483. https://doi.org/10.1016/j.watres.2022.119483.

  • Herman, P.M., and C.H. Heip. 1999. Biogeochemistry of the maximum turbidity zone of estuaries (MATURE): Some conclusions. Journal of Marine Systems 22: 89–104. https://doi.org/10.1016/S0924-7963(99)00034-2.

    Article  ADS  Google Scholar 

  • Huret, M., I. Dadou, F. Dumas, P. Lazure, and V. Garçon. 2005. Coupling physical and biogeochemical processes in the Río de la Plata plume. Continental Shelf Research 25: 629–653. https://doi.org/10.1016/j.csr.2004.10.003.

    Article  ADS  Google Scholar 

  • Irigoien, X., and J. Castel. 1997. Light limitation and distribution of chlorophyll pigments in a highly turbid estuary: The Gironde (SW France). Estuarine, Coastal and Shelf Science 44: 507–517. https://doi.org/10.1006/ecss.1996.0132.

    Article  ADS  CAS  Google Scholar 

  • Jaime, P. R., and Á. N. Menéndez. 2002. Análisis del régimen hidrológico de los ríos Paraná y Uruguay. Informe LHA 01–216–02. Instituto Nacional del Agua (INA).

  • Jalón-Rojas, I., S. Schmidt, and A. Sottolichio. 2015. Turbidity in the fluvial Gironde Estuary (southwest France) based on 10-year continuous monitoring: Sensitivity to hydrological conditions. Hydrology and Earth System Sciences 19: 2805–2819. https://doi.org/10.5194/hess-19-2805-2015.

    Article  ADS  Google Scholar 

  • Jannasch, H.W., L.J. Coletti, K.S. Johnson, S.E. Fitzwater, J.A. Needoba, and J.N. Plant. 2008. The land/ocean biogeochemical observatory: A robust networked mooring system for continuously monitoring complex biogeochemical cycles in estuaries. Limnology and Oceanography: Methods 6: 263–276. https://doi.org/10.4319/lom.2008.6.263.

    Article  CAS  Google Scholar 

  • Kahru, M., J.-M. Leppanen, and O. Rud. 1993. Cyanobacterial blooms cause heating of the sea surface. Marine Ecology Progress Series 101: 1–7. https://doi.org/10.3354/meps101001.

    Article  ADS  Google Scholar 

  • Klinkhammer, G.P.P., J. McManus, D. Colbert, and M.D.D. Rudnicki. 2000. Behavior of terrestrial dissolved organic matter at the continent-ocean boundary from high-resolution distributions. Geochimica et Cosmochimica Acta 64: 2765–2774. https://doi.org/10.1016/S0016-7037(99)00370-1.

    Article  ADS  CAS  Google Scholar 

  • Komada, T., and C.E. Reimers. 2001. Resuspension-induced partitioning of organic carbon between solid and solution phases from a river - ocean transition. Marine Chemistry 76: 155–174. https://doi.org/10.1016/S0304-4203(01)00055-X.

    Article  CAS  Google Scholar 

  • Komada, T., O.M.E. Schofield, and C.E. Reimers. 2002. Fluorescence characteristics of organic matter released from coastal sediments during resuspension. Marine Chemistry 79: 81–97. https://doi.org/10.1016/S0304-4203(02)00056-7.

    Article  CAS  Google Scholar 

  • Kritten, L., R. Preusker, and J. Fischer. 2020. A new retrieval of sun-induced chlorophyll fluorescence in water from ocean colour measurements applied on olci l-1b and l-2. Remote Sensing 12: 1–24. https://doi.org/10.3390/rs12233949.

    Article  Google Scholar 

  • Kuehl, S.A., D.J. DeMaster, and C.A. Nittrouer. 1986. Nature of sediment accumulation on the Amazon continental shelf. Continental Shelf Research 6: 209–225. https://doi.org/10.1016/0278-4343(86)90061-0.

    Article  ADS  CAS  Google Scholar 

  • Lane, R.R., J.W. Day, B.D. Marx, E. Reyes, E. Hyfield, and J.N. Day. 2007. The effects of riverine discharge on temperature, salinity, suspended sediment and chlorophyll a in a Mississippi delta estuary measured using a flow-through system. Estuarine, Coastal and Shelf Science 74: 145–154. https://doi.org/10.1016/j.ecss.2007.04.008.

    Article  ADS  Google Scholar 

  • Lanfredi, N.W., J.L. Pousa, C.A. Mazio, and W.C. Dragani. 1992. Wave-power potential along the coast of the province of Buenos Aires, Argentina. Energy 17: 997–1006. https://doi.org/10.1016/0360-5442(92)90016-S.

    Article  CAS  Google Scholar 

  • Laraque, A., J.L. Guyot, and N. Filizola. 2009. Mixing processes in the Amazon river at the confluences of the Negro and Solimões rivers, Encontro das Águas, Manaus, Brazil. Hydrological Processes 23: 3131–3140. https://doi.org/10.1002/hyp.

    Article  ADS  CAS  Google Scholar 

  • Lemaire, E., G. Abril, R. De Wit, and H. Etcheber. 2002. Distribution of phytoplankton pigments in nine European estuaries and implications for an estuarine typology. Biogeochemistry 59: 5–23. https://doi.org/10.1023/A:1015572508179.

    Article  CAS  Google Scholar 

  • Li, M., C. Peng, M. Wang, W. Xue, K. Zhang, K. Wang, G. Shi, and Q. Zhu. 2017. The carbon flux of global rivers: A re-evaluation of amount and spatial patterns. Ecological Indicators 80: 40–51. https://doi.org/10.1016/j.ecolind.2017.04.049.

    Article  CAS  Google Scholar 

  • Madden, C.J., and J.W. Day. 1992. An instrument system for high-speed mapping of chlorophyll a and physico-chemical variables in surface waters. Estuaries 15: 421–427. https://doi.org/10.2307/1352789.

    Article  CAS  Google Scholar 

  • Mañosa, J., and P. J. Depetris. 1993. Preliminary results in carbon fluxes in the Uruguay river. In Transport of carboon and nutrients in lakes and estuaries, ed. S. Kempe, D. Eisma, and E. T. Degens, Part 6, SC, 13–22. Mitt Geol - Palaont Inst, Univ Hamburg, Heft 74.

  • Marcomini, S., A. Tripaldi, P. Leal, R. López, M.S. Alonso, P.L. Ciccioli, A. Quesada, and P. Bunicontro. 2018. Morfodinámica y sedimentación de un sector del frente deltaico del Paraná entre los años 1933 y 2016, Provincia de Buenos Aires, Argentina. Revista De La Asociación Geológica Argentina 75: 01–16.

    Google Scholar 

  • Meybeck, M. 1982. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282. https://doi.org/10.2475/ajs.282.4.401.

  • MHSA (Marine Hydrographic Service of Argentina), 2022. http://www.hidro.gov.ar/ (accessed in May 2022)

  • Milliman, J.D., and R.H. Meade. 1983. World-wide delivery of river sediment to the oceans. The Journal of Geology 91: 1–21. https://doi.org/10.1086/628741.

    Article  ADS  Google Scholar 

  • Mitchell, S.B., D.M. Lawler, J.R. West, and J.S. Couperthwaite. 2003. Use of continuous turbidity sensor in the prediction of fine sediment transport in the turbidity maximum of the Trent Estuary, UK. Estuarine, Coastal and Shelf Science 58: 645–652. https://doi.org/10.1016/S0272-7714(03)00176-8.

    Article  ADS  Google Scholar 

  • Moquet, J.-S., J.-L. Guyot, A. Crave, J. Viers, N. Filizola, J.-M. Martinez, T.C. Oliveira, et al. 2016. Amazon River dissolved load: Temporal dynamics and annual budget from the Andes to the ocean. Environmental Science and Pollution Research 23: 11405–11429. https://doi.org/10.1007/s11356-015-5503-6.

    Article  CAS  PubMed  Google Scholar 

  • Moreira, D., and C.G. Simionato. 2019. Modeling the suspended sediment transport in a very wide, shallow, and microtidal estuary, the Río de la Plata, Argentina. Journal of Advances in Modeling Earth Systems 11: 3284–3304. https://doi.org/10.1029/2018MS001605.

    Article  Google Scholar 

  • Moreira, D., C. G. Simionato, F. Gohin, F. Cayocca, and M. Luz Clara Tejedor. 2013. Suspended matter mean distribution and seasonal cycle in the Río de La Plata estuary and the adjacent shelf from ocean color satellite (MODIS) and in-situ observations. Continental Shelf Research 68. Elsevier: 51–66. https://doi.org/10.1016/j.csr.2013.08.015.

  • Morel, A., and L. Prieur. 1977. Analysis of variations in ocean color. Limnology and Oceanography 22: 709–722. https://doi.org/10.4319/lo.1977.22.4.0709.

    Article  ADS  Google Scholar 

  • Nagy, G.J., M. Gómez-Erache, C.H. López, and A.C. Perdomo. 2002. Distribution patterns of nutrients and symptoms of eutrophication in the Rio de la Plata River estuary system. Hydrobiologia 475–476: 125–139. https://doi.org/10.1023/A:1020300906000.

    Article  Google Scholar 

  • Nieke, B., R. Reuter, R. Heuermann, H. Wang, M. Babin, and J. Therriault. 1997. Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM), in the St. Lawrence Estuary (Case 2 waters). Continental Shelf Research 17: 235–252. https://doi.org/10.1016/S0278-4343(96)00034-9.

    Article  ADS  Google Scholar 

  • NMSA (National Meteorological Service of Argentina), 2022. Hourly data historical records. https://www.smn.gob.ar/ (accessed in September 2022).

  • NWISA (National Water Information System of Argentina), Ministry of Public Works, 2022. https://snih.hidricosargentina.gob.ar/ (accessed in July 2022).

  • Osburn, C. L., L. Retamal, and W. F. Vincent. 2009. Photoreactivity of chromophoric dissolved organic matter transported by the Mackenzie River to the Beaufort Sea. Marine chemistry 115. Elsevier B.V.: 10–20. https://doi.org/10.1016/j.marchem.2009.05.003.

  • Perillo, G. M. E., M. C. Piccolo, and M. Pino-Quivira. 1999. What do we know about the geomorphology and physical oceanography of South American Estuaries? In Estuaries of South America: Their Geomorphology and Dynamics, ed. G. M. E. Perillo, M. C. Piccolo, and M. Pino-Quivira, 1–13. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-60131-6_1.

  • Piedra-Cueva, I., and M. Fossati. 2007. Residual currents and corridor of flow in the Rio de la Plata. Applied Mathematical Modelling 31: 564–577. https://doi.org/10.1016/j.apm.2005.11.033.

    Article  Google Scholar 

  • Piola, A.R., E.J.D. Campos, O.O. Möller, M. Charo, and C. Martinez. 2000. Subtropical shelf front off eastern South America. Journal of Geophysical Research: Oceans 105: 6565–6578. https://doi.org/10.1029/1999JC000300.

    Article  Google Scholar 

  • Piola, A.R., R.P. Matano, E.D. Palma, O.O. Möller Jr., and E.J.D. Campos. 2005. The influence of the Plata River discharge on the western South Atlantic shelf. Geophysical Research Letters 32: L01603. https://doi.org/10.1029/2004GL021638.

    Article  ADS  Google Scholar 

  • Piola, A.R., O.O. Möller, R.A. Guerrero, and E.J.D. Campos. 2008. Variability of the subtropical shelf front off eastern South America: Winter 2003 and summer 2004. Continental Shelf Research 28: 1639–1648. https://doi.org/10.1016/j.csr.2008.03.013.

    Article  ADS  Google Scholar 

  • Puig, A., H.F. Olguín Salinas, and J.A. Borús. 2015. Relevance of the Paraná River hydrology on the fluvial water quality of the delta biosphere reserve. Environmental Science and Pollution Research 23: 11430–11447. https://doi.org/10.1007/s11356-015-5744-4.

    Article  CAS  PubMed  Google Scholar 

  • Rapela, C.W., R.J. Pankhurst, C. Casquet, C.M. Fanning, E.G. Baldo, J.M. González-Casado, C. Galindo, and J. Dahlquist. 2007. The Río de la Plata craton and the assembly of SW Gondwana. Earth-Science Reviews 83: 49–82. https://doi.org/10.1016/j.earscirev.2007.03.004.

    Article  ADS  Google Scholar 

  • Schmidt, N., V. Fauvelle, A. Ody, J. Castro-Jiménez, J. Jouanno, T. Changeux, T. Thibaut, and R. Sempéré. 2019. The Amazon River: A major source of organic plastic additives to the tropical North Atlantic? Environmental Science and Technology 53: 7513–7521. https://doi.org/10.1021/acs.est.9b01585.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Schofield, O., M. Moline, B. Cahill, T. Frazer, A. Kahl, M. Oliver, J. Reinfelder, S. Glenn, and R. Chant. 2013. Phytoplankton productivity in a turbid buoyant coastal plume. Continental Shelf Research 63: S138–S148. https://doi.org/10.1016/j.csr.2013.02.005.

    Article  ADS  Google Scholar 

  • Schuerch, M., J. Scholten, S. Carretero, F. García-Rodríguez, K. Kumbier, M. Baechtiger, and V. Liebetrau. 2016. The effect of long-term and decadal climate and hydrology variations on estuarine marsh dynamics: An identifying case study from the Río de la Plata. Geomorphology 269. Elsevier B.V.: 122–132. https://doi.org/10.1016/j.geomorph.2016.06.029.

  • Simionato, C.G., A. Berasategui, V.L. Meccia, M. Acha, and H. Mianzan. 2008. Short time-scale wind forced variability in the Río de la Plata Estuary and its role on ichthyoplankton retention. Estuarine, Coastal and Shelf Science 76: 211–226. https://doi.org/10.1016/j.ecss.2007.07.031.

    Article  ADS  Google Scholar 

  • Simionato, C., V. Meccia, and W. Dragani. 2009. On the path of plumes of the Río De La Plata Estuary main tributaries and their mixing scales. Geoacta 34: 87–116.

    Google Scholar 

  • Sobrinho, R. de L., M. C. Bernardes, C. E. de Rezende, J. H. Kim, S. Schouten, and J. S. Sinninghe Damsté. 2021. A multiproxy approach to characterize the sedimentation of organic carbon in the Amazon continental shelf. Marine Chemistry 232. https://doi.org/10.1016/j.marchem.2021.103961.

  • Spencer, R. G. M., P. J. Hernes, A. K. Aufdenkampe, A. Baker, P. Gulliver, A. Stubbins, G. R. Aiken, et al. 2012. An initial investigation into the organic matter biogeochemistry of the Congo River. Geochimica et cosmochimica acta 84. Elsevier Ltd: 614–627. https://doi.org/10.1016/j.gca.2012.01.013.

  • Strickland, J. D. H., and T. R. Parsons. 1972. A practical handbook of seawater analysis. Bulletin 167. Fisheries Research Board of Canada Bulletin. 2nd ed. Vol. 167. Ottawa, Canada: Fisheries Research Board of Canada.

  • Sutherland, B.R., K.J. Barrett, and M.K. Gingras. 2015. Clay settling in fresh and salt water. Environmental Fluid Mechanics 15: 147–160. https://doi.org/10.1007/s10652-014-9365-0.

    Article  ADS  CAS  Google Scholar 

  • Tatone, L. M., C. Bilos, C. N. Skorupka, and J. C. Colombo. 2015. Trace metal behavior along fluvio-marine gradients in the Samborombón Bay, outer Río de la Plata estuary, Argentina. Continental Shelf Research 96. Elsevier: 27–33. https://doi.org/10.1016/j.csr.2015.01.007.

  • Uncles, R.J.J., N.J.J. Bloomer, P.E.E. Frickers, M.L.L. Griffiths, C. Harris, R.J.M.J.M. Howland, A.W.W. Morris, D.H.H. Plummer, and A.D.D. Tappin. 2000. Seasonal variability of salinity, temperature, turbidity and suspended chlorophyll in the Tweed Estuary. Science of the Total Environment 251–252: 115–124. https://doi.org/10.1016/S0048-9697(00)00405-8.

    Article  ADS  PubMed  Google Scholar 

  • Urien, C. M. 1972. Rio de la Plata Estuary environments. In Environmental framework of coastal plain estuaries, ed. B. W. Nelson, 133:213–234. The Geological Society of America, INC, Memoir. https://doi.org/10.1130/MEM133-p213.

  • Verney, R., R. Lafite, and J.C. Brun-Cottan. 2009. Flocculation potential of estuarine particles: The importance of environmental factors and of the spatial and seasonal variability of suspended particulate matter. Estuaries and Coasts 32: 678–693. https://doi.org/10.1007/s12237-009-9160-1.

    Article  CAS  Google Scholar 

  • Walch, H., F. von der Kammer, and T. Hofmann. 2022. Freshwater suspended particulate matter—Key components and processes in floc formation and dynamics. Water research 220. Elsevier Ltd: 118655. https://doi.org/10.1016/j.watres.2022.118655.

  • Wolanski, E., and M. Elliott. 2016. 1 - Introduction. In Estuarine ecohydrology (second edition), ed. E. Wolanski and M. Elliott, Second Edi, 1–33. Boston: Elsevier. https://doi.org/10.1016/B978-0-444-63398-9.00001-5.

  • Wurl, O., K. Bird, M. Cunliffe, W.M. Landing, U. Miller, N.I.H. Mustaffa, M. Ribas-Ribas, C. Witte, and C.J. Zappa. 2018. Warming and inhibition of salinization at the ocean’s surface by cyanobacteria. Geophysical Research Letters 45: 4230–4237. https://doi.org/10.1029/2018GL077946.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai, W., M. Dai, W.J. Cai, Y. Wang, and Z. Wang. 2005. High partial pressure of CO 2 and its maintaining mechanism in a subtropical estuary: The Pearl River estuary, China. Marine Chemistry 93: 21–32. https://doi.org/10.1016/j.marchem.2004.07.003.

    Article  CAS  Google Scholar 

  • Zhang, S., W. Gan, and V. Ittekkot. 1992. Organic matter in large turbid rivers: The Huanghe and its estuary. Marine Chemistry 38: 53–68. https://doi.org/10.1016/0304-4203(92)90067-K.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This manuscript benefited from the constructive criticism of two anonymous reviewers.

Funding

This work was supported by the Argentinean Agency of Scientific and Technical Promotion (ANPCyT; project PICT 2017-1126), the Argentinean National Scientific and Technical Research Council (CONICET; project PIP 11220200102716CO) and the Buenos Aires Province Scientific Research Commission (CIC-PBA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Heguilor.

Additional information

Communicated by Lijun Hou

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 497 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heguilor, S., Speranza, E.D., Tatone, L.M. et al. High-Resolution In Situ Characterization of the Hydrochemical Variability Along the Fluvio-marine Transition of the Río de la Plata Estuary, Argentina. Estuaries and Coasts 47, 397–414 (2024). https://doi.org/10.1007/s12237-023-01289-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-023-01289-5

Keywords

Navigation