Skip to main content
Log in

River Flow Induced Nonlinear Modulation of M4 Overtide in Large Estuaries

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

River discharge is known to enhance tidal damping and tidal wave deformation in estuaries. While the damping effect on astronomical tides has been well documented, river impact on tidal wave deformation and associated overtide generation (shallow water harmonics of one or more astronomical constituents, such as M4) remains insufficiently understood. Overtides affect tidal asymmetry, extreme water levels, and subsequent sediment transport and flooding management, thus meriting in-depth examination. Being inspired by unusual overtide changes in the landward and seaward parts of the Changjiang Estuary under low and high river discharges, in this work, we use a schematized tidal estuary model to systematically explore overtide variations under different river discharges. Model results show enhanced overtide generation in the case with river discharge compared with that without river impact. The M4 amplitude decreases in the landward parts of the estuary, but increases in the seaward parts under increasing river discharges. The potential energy of M4 integrated throughout the estuary shows nonlinear variations and reaches a transitional maximum when the river discharge to tidal mean discharge (R2T) ratio at the mouth is close to unity. Similar nonlinear behaviors are observed for compound tides like MS4 when more astronomical constituents are prescribed and triad tidal interactions are enabled. The space-dependent overtide variability is more profound in large estuaries with high river discharges like the Amazon and Changjiang estuaries. It is ascribed to the inherently nonlinear river-tide interactions, specifically the twofold effects of river discharge in enhancing bottom stress, which simultaneously enhances dissipation of astronomical constituents and reinforces the energy transfer to overtides. These findings highlight the profound nonlinear impact of river discharge on overtides, and inform the study of tidal asymmetry and compound flood risk in large estuaries and deltas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data are available upon resquest of the corresponding author.

References

  • Alebregtse, N.C., and H.E. de Swart. 2016. Effect of river discharge and geometry on tides and net water transport in an estuarine network, an idealized model applied to the Yangtze Estuary. Continental Shelf Research 123: 29–49.

    Article  Google Scholar 

  • Bonneton, P., N. Bonneton, J.-P. Parisot, and B. Castelle. 2015. Tidal bore dynamics in funnel-shaped estuaries. Journal of Geophysical Research: Oceans 120: 923–941.

    Article  Google Scholar 

  • Bloomfield, P. 2013. Fourier analysis of time series: An introduction (2nd), Wiley Series in Probability and Statistics. New York: John Wiley & Sons.

    Google Scholar 

  • Cai, H.Y., H.H.G. Savenije, and M. Toffolon. 2014. Linking the river to the estuary: Influence of river discharge on tidal damping. Hydrology and Earth System Science 18: 287–304.

    Article  Google Scholar 

  • Cai, H.Y., H.H.G. Savenije, E. Garel, X.Y. Zhang, L.C. Guo, M. Zhang, F. Liu, and Q.S. Yang. 2019. Seasonal behaviors of tidal damping and residual water level slope in the Yangtze River estuary: Identifying the critical position and river discharge for maximum tidal damping. Hydrology Earth System Science 23: 2779–2794.

    Article  Google Scholar 

  • Chernetsky, A.S., H.M. Schuttelaars, and S.A. Talke. 2010. The effect of tidal asymmetry and temporal settling lag on sediment trapping in tidal estuaries. Ocean Dynamics 60: 1219–1241.

    Article  Google Scholar 

  • Dijkstra, Y.M., R.L. Brouwer, H.M. Schuttelaars, and G.P. Schramkowski. 2017. The iFlow modelling framework v2.4: A modular idealized process-based model for flow and transport in estuaries. Geoscientific Model Development 10: 2691–2731.

    Article  Google Scholar 

  • Dronkers, J.J. 1964. Tidal computations in rivers and coastal waters, 219–304. Amsterdam: North-Holland.

    Google Scholar 

  • Elahi, M.W.E., I. Jalón-Rojas, X.H. Wang, and E.A. Ritchie. 2020. Influence of seasonal river discharge on tidal propagation in the Ganges-Brahmaputra-Meghna Delta, Bangladesh. Journal of Geophysical Research: Oceans 125: 1–19.

    Google Scholar 

  • Friedrichs, C.T., and D.G. Aubrey. 1988. Non-linear tidal distortion in shallow well-mixed estuaries: A synthesis. Estuarine, Coastal and Shelf Science 27: 521–545.

    Article  Google Scholar 

  • Friedrichs, C.T., and D.G. Aubrey. 1994. Tidal propagation in strongly convergent channels. Journal of Geophysical Research 99: 3321–3336.

    Article  Google Scholar 

  • Gallo, M.N., and S.B. Vinzon. 2005. Generation of overtides and compound tides in the Amazon Estuary. Ocean Dynamics 55: 441–448.

    Article  Google Scholar 

  • Godin, G. 1985. Modification of river tides by the discharge. Journal of Waterway, Port, Coastal and Ocean Engineering 111 (2): 257–274.

    Article  Google Scholar 

  • Godin, G. 1991. Frictional effects in river tides. In Tidal hydrodynamics, ed. B.B. Parker, 379–402. Toronto: John Wiley.

    Google Scholar 

  • Godin, G. 1999. The propagation of tides up rivers with special consideration of the upper Saint Lawrence River. Estuarine, Coastal and Shelf Science 48: 307–324.

    Article  Google Scholar 

  • Godin, G., and A. Martinez. 1994. Numerical experiment to investigate the effect of quadratic friction on the propagation of tides in a channel. Continental Shelf Research 14: 723–748.

    Article  Google Scholar 

  • Green, G. 1837. On the motion of waves in a variable canal of small depth and width. Transactions of the Cambridge Philosophical Society 6:457– 462.

  • Gugliotta, M., and Y. Saito. 2019. Matching trends in channel width, sinuosity, and depth along the fluvial to marine transition zone of tide-dominated river deltas: The needs for a revision of depositional and hydraulic models. Earth-Science Reviews 191: 93–113.

    Article  Google Scholar 

  • Guo, L.C., N. Su, C.Y. Zhu, and Q. He. 2018. How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam? Journal of Hydrology 560: 259–274.

    Article  Google Scholar 

  • Guo, L.C., M. van der Wegen, D.A. Jay, P. Matte, Z.B. Wang, J.A. Roelvink, and Q. He. 2015. River-tide dynamics: exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary. Journal of Geophysical Research: Oceans 120. https://doi.org/10.1002/2014JC010491.

  • Guo L.C., M. van der Wegen, D. Roelvink, and Q. He. 2014. The role of river flow and tidal asymmetry on 1D estuarine morphodynamics. Journal of Geophysical Research: Earth Surface 119: 2315–2334.

  • Guo, L.C., M. van der Wegen, Z.B. Wang, J.A. Roelvink, and Q. He. 2016. Exploring the impacts of multiple tidal constituents and varying river flow on long-term, large scale estuarine morphodynamics by means of a 1D model. Journal of Geophysical Research: Earth Surface 120. https://doi.org/10.1002/2016JF003821.

  • Guo, L.C., Z.B. Wang, I. Townend, and Q. He. 2019. Quantification of tidal asymmetry in varying tidal environments. Journal of Geophysical Research: Oceans 124: 773–787.

    Article  Google Scholar 

  • Guo, L.C., C.Y. Zhu, X.F. Wu, Y.Y. Wang, D.A. Jay, I. Townend, Z.B. Wang, and Q. He. 2020. Strong inland propagation of low-frequency long waves in river estuaries. Geophysical Research Letters 47: e2020GL089112. https://doi.org/10.1029/2020GL089112.

  • Hepkema, T.M., H.E. de Swart, A. Zagaris, and M. Duran-Matute. 2018. Sensitivity of tidal characteristics in double inlet systems to momentum dissipation on tidal flats: A perturbation analysis. Ocean Dynamics 68: 439–455.

    Article  Google Scholar 

  • Hibma, A., H.M. Schuttelaars, and Z.B. Wang. 2003. Comparison of longitudinal equilibrium profiles of estuaries in idealized and process-based models. Ocean Dynamics 53: 252–269.

    Article  Google Scholar 

  • Hoitink, A.J.F., and D.A. Jay. 2016. Tidal river dynamics: Implications for deltas. Reviews of Geophysics 54: 240–272.

    Article  Google Scholar 

  • Horrevoets, A.C., H.H.G. Savenije, J.N. Schuurman, and S. Graas. 2004. The influence of river discharge on tidal damping in alluvial estuaries. Journal of Hydrology 294: 213–228.

    Article  Google Scholar 

  • Jay, D.A. 1991. Green’s law revisited: Tidal long-wave propagation in channels with strong topography. Journal of Geophysical Research 96: 20585–20598.

    Article  Google Scholar 

  • Jay, D.A., and E.P. Flinchem. 1997. Interaction of fluctuating river flow with a barotropic tide: a demonstration of wavelet tidal analysis methods. Journal of Geophysical Research 102(C3): 5705–5720.

  • Jay D.A., K. Leffler, H.L. Diefenderfer, and A.B. Borde. 2014. Tidal-fluvial and estuarine processes in the lower Columbia River: I. along-channel water level variations, Pacific Ocean to Bonneville Dam. Estuaries and Coasts. https://doi.org/10.1007/s12237-014-9819-0.

  • Kästner, K., A.J.F. Hoitink, P.J.J.F. Torfs, E. Deleersnijder, and N.S. Ningsih. 2019. Propgation of tides along a river with a sloping bed. Journal of Fluid Mechanics 872: 39–73.

    Article  Google Scholar 

  • Kreiss, H. 1957. Some remarks about nonlinear oscillations in tidal channels. Tellus 9: 53–68.

    Article  Google Scholar 

  • Lanzoni, S., and G. Seminara. 1998. On tide propagation in convergent estuaries. Journal of Geophysical Research 103 (C13): 30793–30812.

    Article  Google Scholar 

  • Lanzoni, S., and A. D’Alpaos. 2015. On funneling of tidal channels. Journal of Geophysical Research: Earth Surface 120: 433–452.

    Article  Google Scholar 

  • Le Provost, C. 1991. Generation of overtides and compound tides (review). In Tidal Hydrodynamics, ed. B.B. Parker, 269–295. Toronto: John Wiley.

    Google Scholar 

  • Lesser G.R., J.A. Roelvink, J.A.T.M. van Kester, and G.S. Stelling. 2004. Development and validation of a three dimensional morphological model. Coastal Engineering 51: 883–915.

  • Lieberthal, B., K. Huguenard, L. Ross, and K. Bears. 2019. The generation of overtides in flow around a headland in a low inflow estuary. Journal of Geophysical Research: Oceans 124: 955–980.

  • Lorentz, H.A. 1926. Report State Committee Zuiderzee (in Dutch).

  • Losada, M.A., M. Diez-Minguito, and M.A. Reyes-Merlo. 2017. Tidal-fluvial interaction in the Guadalquivir River Estuary: Spatial and frequency-dependent response of currents and water levels. Journal of Geophysical Research: Oceans 122: 847–865.

    Article  Google Scholar 

  • Lu, S., C.F. Tong, D.-Y. Lee, J.H. Zheng, J. Shen, W. Zhang, and Y.X. Yan. 2015. Propagation of tidal waves up in the Yangtze Estuary during the dry season. Journal of Geophysical Research: Oceans 120: 6445–6473.

    Article  Google Scholar 

  • Moftakhari, H., G. Salvadori, A. AghaKouchak, B. Sanders, and R. Matthew. 2017. Compounding effects of sea level rise and fluvial flooding. Proceedings of the National Academy of Sciences 114 (37): 9785–9790.

    Article  CAS  Google Scholar 

  • Nidzieko, N.J. 2010. Tidal asymmetry in estuaries with mixed sedmidiurnal/diurnal tides. Journal of Geophysical Research: Oceans 115: C08006. https://doi.org/10.1029/2009JC005864.

    Article  Google Scholar 

  • Parker, B.B. 1984. Frictional effects on tidal dynamics of shallow estuary. PhD. Dissertation, The Johns Hopkins University, 291 pp.

  • Parker, B.B. 1991. The relative importance of the various nonlinear mechanisms in a wide range of tidal interactions. In Tidal Hydrodynamics, ed. B.B. Parker, 237–268. New York: John Wiley.

    Google Scholar 

  • Pawlowicz, R., B. Beardsley, and S. Lentz. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences 28: 929–937.

    Article  Google Scholar 

  • Pingree, R.D., and L. Maddock. 1978. The M4 tide in the English Channel derived from a non-linear numerical model of the M2 tide. Deep-Sea Research 25: 52–63.

    Article  Google Scholar 

  • Proudman, J. 1953. Dynamical Oceanography. Wiley, New York, 409 pp.

  • Postma, H. 1961. Transport and accumulation of suspended matter in the Dutch Wadden Sea. Netherlands Journal of Sea Research 1: 148–190.

    Article  Google Scholar 

  • Pugh, D.T. 1987. Tides, surges and mean sea-level, 472 pp., John Wiley, Hoboken, N.J.

  • Ridderinkhof, W., H.E. de Swart, M. van der Vegt, N.C. Alebregtse, and P. Hoekstra. 2014. Geometry of tidal inlet systems: A key factor for the net sediment transport in tidal inlets. Journal of Geophysical Research: Oceans 119 (10): 6988–7006. https://doi.org/10.1002/2014jc010226.

    Article  Google Scholar 

  • Sassi, M.G., and A.J.F. Hoitink. 2013. River flow controls on tides and tide-mean water level profiles in a tidal freshwater river. Journal of Geophysical Research 118: 1–3. https://doi.org/10.1002/jgrc.20297.

    Article  Google Scholar 

  • Savenije, H.H.G. 2005. Salinity and tides in alluvial estuaries. Elsevier Science, Amsterdam.

  • Speer P.E., and D.G. Aubrey. 1985. A study of non-linear tidal propagation in shallow inlet/estuarine systems Part II: theory. Estuarine. Coastal and Shelf Science 21: 207–224.

  • Stronach, J.A., and T.S. Murty. 1989. Nonlinear river-tidal interactions in the Fraser River. Canada. Marine Geodesy 13 (4): 313–339.

    Article  Google Scholar 

  • Talke S.A., and D.A. Jay. 2020. Changing tides: the role of natural and anthropogenic factors. Annual Review of Marine Sciences 12: 14.1–14.31.

  • Toffolon, M., and H.H.G. Savenije. 2011. Revisiting linearized one-dimensional tidal propagation. Journal of Geophysical Research 116, C07007. https://doi.org/10.1029/2010JC006616.

  • Townend, I.H., Z.B. Wang, and J.G. Rees. 2007. Millennial to annual volume changes in the Humber Estuary. Proceedings of the Royal Society A. https://doi.org/10.1098/rspa.2006.1798.

    Article  Google Scholar 

  • van Rijn, L.C. 2011. Analytical and numerical analysis of tides and salinities in estuaries, part I: Tidal wave propagation in convergent estuaries. Ocean Dynamics 61: 1719–1741.

    Article  Google Scholar 

  • Walters, R.A., and R.E. Werner. 1991. Nonlinear generation of overtide, compound tides, and residuals. In Tidal hydrodynamics, ed. B.B. Parker, 297–320. Toronto: John Wiley.

    Google Scholar 

  • Wang Z.B., H. Juken, and H.J. de Vriend. 1999. Tidal asymmetry and residual sediment transport in estuaries. WL|Hydraulic, report No. Z2749, 66 pp.

  • Wang, Z.B., M. Jeuken, H. Gerritsen, H.J. de Vriend, and B.A. Kornman. 2002. Morphology and asymmetry of vertical tides in the Westerschelde estuary. Continental Shelf Research 22: 2599–2609.

    Article  Google Scholar 

  • Wang, Z.B., W. Vandenbruwaene, M. Taal, and H. Winterwerp. 2019. Amplification and deformation of tidal wave in the Upper Scheldt Estuary. Ocean Dynamics. https://doi.org/10.1007/s10236-019-01281-3.

    Article  Google Scholar 

  • Winterwerp, J.C. 2004. The transport of fine sediment in shallow basins: Humber case study. Delft Hydraulics Report No. Z3506, 76pp.

  • Zimmerman, J.T.F. 1992. On the Lorentz linearization of a nonlinearly damped tidal Helmholtz oscillator. Proceeding KNAW 95 (1): 127–145.

    Google Scholar 

  • Zhang, M., I. Townend, H.Y. Cai, and Y.X. Zhou. 2015. Seasonal variation of tidal prism and energy in the Changjiang River estuary: A numerical study. Chinese Journal of Oceanology and Limnology 33 (5): 1–12.

    Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (Nos. U2040216; 41876091), and partially sponsored by the project “Coping with deltas in transition” within the Programme of Strategic Scientific Alliance between China and The Netherlands (PSA), financed by the Ministry of Science and Technology, P.R. China (MOST) (No. 2016YFE0133700) and Royal Netherlands Academy of Arts and Sciences (KNAW) (No. PSA-SA-E-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leicheng Guo.

Additional information

Communicated by Arnoldo Valle-Levinson

Key points

1. River discharge enhances tidal wave deformation and induces larger overtides in estuaries.

2. Overtide generation is maximal when the river discharge to tidal mean discharge ratio is close to unity.

3. The quadratic bottom stress plays a dominant role in controlling the space-dependent overtide variations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 789 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Zhu, C., Cai, H. et al. River Flow Induced Nonlinear Modulation of M4 Overtide in Large Estuaries. Estuaries and Coasts 46, 925–940 (2023). https://doi.org/10.1007/s12237-023-01183-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-023-01183-0

Keywords

Navigation