Skip to main content

Coastal Countercurrents Increase Propagule Pressure of an Aquatic Invasive Species to an Area Where Previous Introductions Failed

Abstract

The establishment of many non-indigenous species is primarily controlled by propagule pressure, local environmental conditions, and biological interactions. An introduction is doomed to fail if any one of these factors is unsuitable. A few Atlantic blue crab Callinectes sapidus Rathbun, 1896 specimens have been collected along a limited stretch of the central Portuguese coast since the late 1970s, but a viable population was never detected. However, starting in 2016, a population of the Atlantic blue crab has established and expanded along the southern Portuguese coast. The objective of the present study was to provide insights into the invasion of the Atlantic blue crab in Portugal based on unpublished museum collection records and new records made by citizen scientists on the western coast and to provide a mechanistic explanation for the recent expansion based on observational oceanography data. Citizen science records along with observational oceanography data from 2019 and 2020 suggest that the southern Portugal population is expanding towards the western coast due to warmer coastal countercurrent events that form in the Gulf of Cadiz during the reproductive period of the Atlantic blue crab (summer–early fall). This oceanographic feature facilitates the transport of larvae towards the western coast of Portugal, which increases propagule pressure, while estuaries along the southwestern coast may serve as stepping stones supporting the northwards expansion of the species in tandem with increasing sea temperature. This study also highlights the value of citizen science in detecting the range expansion of invasive species over wide geographical areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Andersson-Sundén, E., C. Gustavsson, A. Hjalmarsson, M. Jacewicz, M. Lantz, P. Marciniewski, V. Ziemann, A. Barker, and K. Lundén. 2019. Citizen science and radioactivity. Nuclear Physics News 29 (2): 25–28. https://doi.org/10.1080/10619127.2019.1603559.

    Article  Google Scholar 

  • Azzurro, E., E. Broglio, F. Maynou, and M. Bariche. 2013. Citizen science detects the undetected: The case of Abudefduf saxatilis from the Mediterranean Sea. Management of Biological Invasions 4 (2): 167–170. https://doi.org/10.3391/mbi.2013.4.2.10.

    Article  Google Scholar 

  • Baptista, V., P.L. Silva, P. Relvas, M.A. Teodósio, and F. Leitão. 2018. Sea surface temperature variability along the Portuguese coast since 1950. International Journal of Climatology 38 (3): 1145–1160. https://doi.org/10.1002/joc.5231.

    Article  Google Scholar 

  • Bariche, M., C. Constantinou, and N. Sayar. 2018. First confirmed record of the white-spotted puffer Arothron hispidus (Linnaeus, 1758) in the Mediterranean Sea. BioInvasions Records 7 (4): 433–436. https://doi.org/10.3391/bir.2018.7.4.13.

    Article  Google Scholar 

  • Bauer, L.J., and T.J. Miller. 2010. Temperature-, salinity-, and size-dependent winter mortality of juvenile blue crabs (Callinectes sapidus). Estuaries and Coasts 33 (3): 668–677. https://doi.org/10.1007/s12237-010-9277-2.

    CAS  Article  Google Scholar 

  • Beqiraj, S., and L. Kashta. 2010. The establishment of blue crab Callinectes sapidus Rathbun, 1896 in the Lagoon of Patok, Albania (south-east Adriatic Sea). Aquatic Invasions 5 (2): 219–221. https://doi.org/10.3391/ai.2010.5.2.16.

    Article  Google Scholar 

  • BioDiversity4All. 2021. Biodiversidade para todos. https://www.biodiversity4all.org/observations/81452778. Accessed 07 May 2021.

  • Boero, F., M. Putti, E. Trainito, E. Prontera, S. Piraino, and T.A. Shiganova. 2009. First records of Mnemiopsis leidyi (Ctenophora) from the Ligurian, Thyrrhenian and Ionian Seas (Western Mediterranean) and first record of Phyllorhiza punctata (Cnidaria) from the Western Mediterranean. Aquatic Invasions 4 (4): 675–680. https://doi.org/10.3391/ai.2009.4.4.13.

    Article  Google Scholar 

  • Brylawski, B.J., and T.J. Miller. 2006. Temperature-dependent growth of the blue crab (Callinectes sapidus): A molt process approach. Canadian Journal of Fisheries and Aquatic Sciences 63 (6): 1298–1308. https://doi.org/10.1139/f06-011.

    Article  Google Scholar 

  • Cabal, J., A. Millán, and J.C. Arronte. 2006. A new record of Callinectes sapidus Rathbun, 1896 (Crustacea: Decapoda: Brachyura) from the Cantabrian Sea, Bay of Biscay, Spain. Aquatic Invasions 1 (3): 186–187. https://doi.org/10.1017/S1755267214000384.

    Article  Google Scholar 

  • Cabral, S., F. Carvalho, M. Gaspar, J. Ramajal, E. Sá, C. Santos, G. Silva, A. Sousa, J. L. Costa and P. Chainho. 2020. Non-indigenous species in soft-sediments: are some estuaries more invaded than others? Ecological Indicators 110: 105640. https://doi.org/10.1016/j.ecolind.2019.105640.

  • Cadman, L., and M. Weinstein. 1988. Effects of temperature and salinity on the growth of laboratory-reared juvenile blue crabs Callinectes sapidus Rathbun. Journal of Experimental Marine Biology and Ecology 121 (3): 193–207. https://doi.org/10.1016/0022-0981(88)90088-3.

    Article  Google Scholar 

  • Casaucao, A., E. González-Ortegón, M.P. Jiménez, A. Teles-Machado, S. Plecha, A.J. Peliz, and I. Laiz. 2021. Assessment of the spawning habitat, spatial distribution, and Lagrangian dispersion of the European anchovy (Engraulis encrasicolus) early stages in the Gulf of Cadiz during an apparent anomalous episode in 2016. Science of the Total Environment 781: 146530. https://doi.org/10.1016/j.scitotenv.2021.146530.

    CAS  Article  Google Scholar 

  • Castejón, D., and G. Guerao. 2013. A new record of the American blue crab, Callinectes sapidus Rathbun, 1896 (Decapoda: Brachyura: Portunidae), from the Mediterranean coast of the Iberian Peninsula. BioInvasions Records 2 (2): 141–143. https://doi.org/10.3391/bir.2013.2.2.08.

    Article  Google Scholar 

  • Chainho, P., A. Fernandes, A. Amorim, S. P. Ávila, J. Canning-Clode, J. J. Castro, A. C. Costa, J. L. Costa, T. Cruz and S. Gollasch. 2015. Non-indigenous species in Portuguese coastal areas, coastal lagoons, estuaries and islands. Estuarine, Coastal and Shelf Science 167(A): 199–211. https://doi.org/10.1016/j.ecss.2015.06.019.

  • Chaouti, A., Z. Belattmania, A. Nadri, E. Serrão, J. Encarnação, A. Teodósio, A. Reani, and B. Sabour. 2022. The invasive Atlantic blue crab Callinectes sapidus Rathbun, 1896 expands its distributional range southward to Atlantic African shores: First records along the Atlantic coast of Morocco. BioInvasions Records 11 (1): 227–237. https://doi.org/10.3391/bir.2022.11.1.23.

    Article  Google Scholar 

  • Chartosia, N., D. Anastasiadis, H. Bazairi, F. Crocetta, A. Deidun, M. Despalatovic, V.D. Martino, N. Dimitriou, B. Dragicevic, J. Dulcic, F. Durucan, D. Hasbek, V. Ketsilis-Rinis, P. Kleitou, L. Lipej, A. Macali, A. Marchini, M. Ousselam, S. Piraino, B. Stancanelli, M. Theodosiou, F. Tiralongo, T. Todorova, D. Trkov, and S. Yapici. 2018. New mediterranean biodiversity records (July 2018). Mediterranean Marine Science 19 (2): 398–415. https://doi.org/10.12681/mms.18099.

    Article  Google Scholar 

  • Clavero, M., N. Franch, R. Bernardo-Madrid, V. López, P. Abelló, J.M. Queral, and G. Mancinelli. 2022. Severe, rapid and widespread impacts of an Atlantic blue crab invasion. Marine Pollution Bulletin 176: 113479. https://doi.org/10.1016/j.marpolbul.2022.113479.

    CAS  Article  Google Scholar 

  • Colautti, R.I., A. Ricciardi, I.A. Grigorovich, and H.J. MacIsaac. 2004. Is invasion success explained by the enemy release hypothesis? Ecology Letters 7 (8): 721–733. https://doi.org/10.1111/j.1461-0248.2004.00616.x.

    Article  Google Scholar 

  • Copernicus. (2022). E.U. Copernicus Marine Service Information. Atlantic-Iberian Biscay Irish- Ocean Physics Reanalysis, product “IBI_MULTIYEAR_PHY_005_002”. https://doi.org/10.48670/moi-00029. Accessed 16 Jan 2022.

  • Crall, A.W., G.J. Newman, C.S. Jarnevich, T.J. Stohlgren, D.M. Waller, and J. Graham. 2010. Improving and integrating data on invasive species collected by citizen scientists. Biological Invasions 12 (10): 3419–3428. https://doi.org/10.1007/s10530-010-9740-9.

    Article  Google Scholar 

  • Cunha, A.H., K. Erzini, E.A. Serrão, E. Gonçalves, R. Borges, M. Henriques, V. Henriques, M. Guerra, C. Duarte, and N. Marbá. 2014. Biomares, a LIFE project to restore and manage the biodiversity of Prof. Luiz Saldanha Marine Park. Journal of Coastal Conservation 18 (6): 643–655. https://doi.org/10.1007/s11852-014-0336-x.

    Article  Google Scholar 

  • Czerniejewski, P., N. Kasowska, A. Linowska, and A. Rybczyk. 2020. A new record of the invasive blue crab (Callinectes sapidus Rathbun, 1896) and his parasite from the Baltic basin. Oceanologia 62 (1): 111–115. https://doi.org/10.1016/j.oceano.2019.06.004.

    Article  Google Scholar 

  • Darnell, M.Z., D. Rittschof, K.M. Darnell, and R.E. McDowell. 2009. Lifetime reproductive potential of female blue crabs Callinectes sapidus in North Carolina, USA. Marine Ecology Progress Series 394: 153–163. https://doi.org/10.3354/meps08295.

    Article  Google Scholar 

  • deRivera, C.E., G.M. Ruiz, A.H. Hines, and P. Jivoff. 2005. Biotic resistance to invasion: Native predator limits abundance and distribution of an introduced crab. Ecology 86: 3364–3376. https://doi.org/10.1890/05-0479.

    Article  Google Scholar 

  • de Oliveira Júnior, L., E. Garel, and P. Relvas. 2021. The structure of incipient coastal counter currents in south Portugal as indicator of their forcing agents. Journal of Marine Systems 214: 103486. https://doi.org/10.1016/j.jmarsys.2020.103486.

    Article  Google Scholar 

  • Dinno, A. 2017. dunn.test: Dunn’s test of multiple comparisons using rank sums. R package version 1.3.5. https://CRAN.R-project.org/package=dunn.test. Accessed 7 May 2021.

  • Encarnacão, J., T. Leitão, P. Morais, D. Piló, P. Range, L. Chícharo, and M.A. Teodósio. 2013. Effects of inter-annual freshwater inflow shifts on the community structure of estuarine decapods. Cahiers De Biologie Marine 54 (2): 181–189.

    Google Scholar 

  • Encarnação, J., P. Morais, V. Baptista, J. Cruz, and M.A. Teodósio. 2019. New evidence of marine fauna tropicalization off the southwestern Iberian Peninsula (southwest Europe). Diversity 11 (4): 48. https://doi.org/10.3390/d11040048.

    Article  Google Scholar 

  • Encarnação, J., M.A. Teodósio, and P. Morais. 2021a. Citizen science and biological invasions: A review. Frontiers in Environmental Science 8: 303. https://doi.org/10.3389/fenvs.2020.602980.

    Article  Google Scholar 

  • Encarnação, J., V. Baptista, M.A. Teodósio, and P. Morais. 2021b. Low-cost citizen science effectively monitors the rapid expansion of a marine invasive species. Frontiers in Environmental Science 9: 52705. https://doi.org/10.3389/fenvs.2021.752705.

    Article  Google Scholar 

  • Epifanio, C. 1995. Transport of blue crab (Callinectes sapidus) larvae in the waters off mid-Atlantic states. Bulletin of Marine Science 57 (3): 713–725.

    Google Scholar 

  • Epifanio, C., C. Valenti, and A. Pembroke. 1984. Dispersal and recruitment of blue crab larvae in Delaware Bay, USA. Estuarine, Coastal and Shelf Science 18 (1): 1–12. https://doi.org/10.1016/0272-7714(84)90002-7.

    Article  Google Scholar 

  • Epifanio, C.E. 2019. Early life history of the blue crab Callinectes sapidus: A review. Journal of Shellfish Research 38 (1): 1–22. https://doi.org/10.2983/035.038.0101.

    Article  Google Scholar 

  • Ferreira, C.E., O.J. Luiz, S.R. Floeter, M.B. Lucena, M.C. Barbosa, C.R. Rocha, and L.A. Rocha. 2015. First record of invasive lionfish (Pterois volitans) for the Brazilian coast. PLoS ONE 10 (4): e0123002. https://doi.org/10.1371/journal.pone.0123002.

    CAS  Article  Google Scholar 

  • Forsström, T., O. Vesakoski, K. Riipinen, and A.E. Fowler. 2018. Post-invasion demography and persistence of a novel functional species in an estuarine system. Biological Invasions 20 (11): 3331–3345. https://doi.org/10.1007/s10530-018-1777-1.

    Article  Google Scholar 

  • Forward, R.B., Jr., M.C. DeVries, D. Rittschof, D.A. Frankel, J.P. Bischoff, C.M. Fisher, and J.M. Welch. 1996. Effects of environmental cues on metamorphosis of the blue crab Callinectes sapidus. Marine Ecology Progress Series 131: 165–177. https://doi.org/10.3354/meps131165.

    Article  Google Scholar 

  • Gaudêncio, M., and M. Guerra. 1979. Note sur la presence de Callinectes sapidus Rathbun 1896 (Crustacea Decapoda Brachyura) dans l’estuaire du Taje. Boletim Do Instituto Nacional De Investigação Das Pescas 2: 67–73.

    Google Scholar 

  • Graham, D.J., H. Perry, P. Biesiot, and R. Fulford. 2012. Fecundity and egg diameter of primiparous and multiparous blue crab Callinectes sapidus (Brachyura: Portunidae) in Mississippi waters. Journal of Crustacean Biology 32 (1): 49–56. https://doi.org/10.1163/193724011X615325.

    Article  Google Scholar 

  • Hench, J.L., R.B. Forward Jr., S.D. Carr, D. Rittschof, and R.A. Luettich Jr. 2004. Testing a selective tidal-stream transport model: Observations of female blue crab (Callinectes sapidus) vertical migration during the spawning season. Limnology and Oceanography 49 (5): 1857–1870. https://doi.org/10.4319/lo.2004.49.5.1857.

    Article  Google Scholar 

  • Hines, A.H. 1982. Allometric constraints and variables of reproductive effort in brachyuran crabs. Marine Biology 69 (3): 309–320. https://doi.org/10.1007/BF00397496.

    Article  Google Scholar 

  • Hines, A.H., P.R. Jivoff, P.J. Bushmann, J. van Montfrans, S.A. Reed, D.L. Wolcott, and T.G. Wolcott. 2003. Evidence for sperm limitation in the blue crab, Callinectes sapidus. Bulletin of Marine Science 72 (2): 287–310.

    Google Scholar 

  • Hines, A.H., R.N. Lipcius, and A.M. Haddon. 1987. Population dynamics and habitat partitioning by size, sex, and molt stage of blue crabs Callinectes sapidus in a subestuary of central Chesapeake Bay. Marine Ecology Progress Series 36 (1): 55–64.

    Article  Google Scholar 

  • Holland Jr, J. 1971. Effects of temperature and salinity on growth, food conversion, survival and temperature resistance of juvenile blue crabs, Callinectes sapidus Rathbun. PhD Thesis. Texas A&M University.190 pp.

  • Holle, B.V., and D. Simberloff. 2005. Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86 (12): 3212–3218. https://doi.org/10.1890/05-0427.

    Article  Google Scholar 

  • Izquierdo-Gómez, D. 2022. Synergistic use of facebook, online questionnaires and local ecological knowledge to detect and reconstruct the bioinvasion of the Iberian Peninsula by Callinectes sapidus Rathbun, 1896. Biological Invasions 24: 1059–1082. https://doi.org/10.1007/s10530-021-02696-0.

  • Johnson, D.S. 2015. The savory swimmer swims north: A northern range extension of the blue crab Callinectes sapidus? Journal of Crustacean Biology 35 (1): 105–110. https://doi.org/10.1163/1937240X-00002293.

    Article  Google Scholar 

  • JPL MUR MEaSUREs Project. 2015. GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis. Ver. 4.1. PO.DAAC, CA, USA. https://doi.org/10.5067/GHGMR-4FJ04. Accessed 07 May 2021.

  • Leffler, C. 1972. Some effects of temperature on the growth and metabolic rate of juvenile blue crabs, Callinectes sapidus, in the laboratory. Marine Biology 14 (2): 104–110. https://doi.org/10.1007/BF00373209.

    Article  Google Scholar 

  • Lockwood, J.L., P. Cassey, and T. Blackburn. 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology & Evolution 20 (5): 223–228. https://doi.org/10.1016/j.tree.2005.02.004.

    Article  Google Scholar 

  • Mancinelli, G., P. Chainho, L. Cilenti, S. Falco, K. Kapiris, G. Katselis, and F. Ribeiro. 2017. The Atlantic blue crab Callinectes sapidus in southern European coastal waters: Distribution, impact and prospective invasion management strategies. Marine Pollution Bulletin 119 (1): 5–11. https://doi.org/10.1016/j.marpolbul.2017.02.050.

    CAS  Article  Google Scholar 

  • Mancinelli, G., R. Bardelli, and A. Zenetos. 2021. A global occurrence database of the Atlantic blue crab Callinectes sapidus. Scientific Data 8 (1): 1–10. https://doi.org/10.1038/s41597-021-00888-w.

    Article  Google Scholar 

  • Manfrin, C., G. Comisso, A. Dall’Asta, N. Bettoso, and J.S. Chung. 2016. The return of the Blue Crab, Callinectes sapidus Rathbun, 1896, after 70 years from its first appearance in the Gulf of Trieste, northern Adriatic Sea, Italy (Decapoda: Portunidae). Check List 12 (6): 2006. https://doi.org/10.15560/12.6.2006.

    Article  Google Scholar 

  • Monteiro, J.N., A. Ovelheiro, A.M. Ventaneira, V. Vieira, M.A. Teodósio, and F. Leitão. 2022. Variability in Carcinus maenas fecundity along lagoons and estuaries of the Portuguese coast. Estuaries and Coasts. https://doi.org/10.1007/s12237-021-01035-9.

    Article  Google Scholar 

  • Morais, P., and M. Reichard. 2018. Cryptic invasions: A review. Science of the Total Environment 613: 1438–1448. https://doi.org/10.1016/j.scitotenv.2017.06.133.

    CAS  Article  Google Scholar 

  • Morais, P., and M.A. Teodósio. 2016. The transatlantic introduction of weakfish Cynoscion regalis (Bloch & Schneider, 1801) (Sciaenidae, Pisces) into Europe. BioInvasions Records 5 (4): 259–265. https://doi.org/10.3391/bir.2016.5.4.11.

    Article  Google Scholar 

  • Morais, P., M.A. Chícharo, and L. Chícharo. 2009. Changes in a temperate estuary during the filling of the biggest European dam. Science of the Total Environment 407 (7): 2245–2259. https://doi.org/10.1016/j.scitotenv.2008.11.037.

    CAS  Article  Google Scholar 

  • Morais, P., M. Gaspar, E. Garel, V. Baptista, J. Cruz, I. Cerveira, F. Leitão, and M.A. Teodósio. 2019. The Atlantic blue crab Callinectes sapidus Rathbun, 1896 expands its non-native distribution into the Ria Formosa lagoon and the Guadiana estuary (SW-Iberian Peninsula, Europe). BioInvasions Records 8 (1): 123–133. https://doi.org/10.3391/bir.2019.8.1.14.

    Article  Google Scholar 

  • Morgan, S.G., J.L. Fisher, S.H. Miller, S.T. McAfee, and J.L. Largier. 2009. Nearshore larval retention in a region of strong upwelling and recruitment limitation. Ecology 90 (12): 3489–3502. https://doi.org/10.1890/08-1550.1.

    Article  Google Scholar 

  • Nehring, S. 2011. Invasion history and success of the American blue crab Callinectes sapidus in European and adjacent waters. In: In the Wrong Place - Alien Marine Crustaceans: Distribution, Biology and Impacts, ed. B. Galil, P. Clark and J. Carlton, 607–624. Dordrecht: Springer. https://doi.org/10.1007/978-94-007-0591-3_21.

  • Observation. 2021. Stichting Observation International and local partners. https://observation.org/observation/46557709/. Accessed 07 May 2021.

  • Occhipinti-Ambrogi, A. 2007. Global change and marine communities: Alien species and climate change. Marine Pollution Bulletin 55 (7–9): 342–352. https://doi.org/10.1016/j.marpolbul.2006.11.014.

    CAS  Article  Google Scholar 

  • Odenwald, S. 2018. A citation study of citizen science projects in space science and astronomy. Citizen Science: Theory and Practice 3 (2): 1–11. https://doi.org/10.5334/cstp.152.

    Article  Google Scholar 

  • Peliz, A., P. Marchesiello, J. Dubert, M. Marta-Almeida, C. Roy, and H. Queiroga. 2007. A study of crab larvae dispersal on the Western Iberian Shelf: Physical processes. Journal of Marine Systems 68 (1–2): 215–236. https://doi.org/10.1016/j.jmarsys.2006.11.007.

    Article  Google Scholar 

  • Perdikaris, C., E. Konstantinidis, E. Gouva, A. Ergolavou, D. Klaoudatos, C. Nathanailides, and I. Paschos. 2016. Occurrence of the invasive crab species Callinectes sapidus Rathbun, 1896, in NW Greece. Walailak Journal of Science and Technology 13 (7): 503–510. https://doi.org/10.14456/vol13iss4pp.

    Article  Google Scholar 

  • Prager, M.H., J.R. McConaugha, C.M. Jones, and P.J. Geer. 1990. Fecundity of blue crab, Callinectes sapidus, in Chesapeake Bay: Biological, statistical and management considerations. Bulletin of Marine Science 46 (1): 170–179.

    Google Scholar 

  • Pyšek, P., and D.M. Richardson. 2010. Invasive species, environmental change and management, and health. Annual Review of Environment and Resources 35: 25–55. https://doi.org/10.1146/annurev-environ-033009-095548.

    Article  Google Scholar 

  • Queiroga, H., M.J. Almeida, T. Alpuim, A.A. Flores, S. Francisco, I. Gonzàlez-Gordillo, A.I. Miranda, I. Silva, and J. Paula. 2006. Tide and wind control of megalopal supply to estuarine crab populations on the Portuguese west coast. Marine Ecology Progress Series 307: 21–36. https://doi.org/10.3354/meps307021.

    Article  Google Scholar 

  • Queiroga, H., T. Cruz, A. dos Santos, J. Dubert, J.I. González-Gordillo, J. Paula, A. Peliz, and A.M.P. Santos. 2007. Oceanographic and behavioural processes affecting invertebrate larval dispersal and supply in the western Iberia upwelling ecosystem. Progress in Oceanography 74 (2–3): 174–191. https://doi.org/10.1016/j.pocean.2007.04.007.

    Article  Google Scholar 

  • R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 7 May 2021.

  • Rathbun, M.J. 1896. The genus Callinectes. Proceedings of the United States National Museum. 18 (1070): 349–375. https://doi.org/10.5479/si.00963801.18-1070.349.

    Article  Google Scholar 

  • Relvas, P., and E.D. Barton. 2002. Mesoscale patterns in the Cape São Vicente (Iberian Peninsula) upwelling region. Journal of Geophysical Research: Oceans 107 (C10): 28–1–28–23. https://doi.org/10.1029/2000JC000456.

  • Relvas, P., E.D. Barton, J. Dubert, P.B. Oliveira, A. Peliz, J. Da Silva, and A.M.P. Santos. 2007. Physical oceanography of the western Iberia ecosystem: Latest views and challenges. Progress in Oceanography 74 (2–3): 149–173. https://doi.org/10.1016/j.pocean.2007.04.021.

    Article  Google Scholar 

  • Ribeiro, F., and A. Veríssimo. 2014. A new record of Callinectes sapidus in a western European estuary (Portuguese coast). Marine Biodiversity Records 7: e36. https://doi.org/10.1017/S1755267214000384.

    Article  Google Scholar 

  • Rogers, T.L., T.C. Gouhier, and D.L. Kimbro. 2018. Temperature dependency of intraguild predation between native and invasive crabs. Ecology 99: 885–895. https://doi.org/10.1002/ecy.2157.

    Article  Google Scholar 

  • Roman, J. 2006. Diluting the founder effect: Cryptic invasions expand a marine invader’s range. Proceedings of the Royal Society B: Biological Sciences 273 (1600): 2453–2459. https://doi.org/10.1098/rspb.2006.3597.

    Article  Google Scholar 

  • Santos, A.M.P., A. Chícharo, A. Dos Santos, T. Moita, P.B. Oliveira, A. Peliz, and P. Ré. 2007. Physical–biological interactions in the life history of small pelagic fish in the Western Iberia Upwelling Ecosystem. Progress in Oceanography 74 (2–3): 192–209. https://doi.org/10.1016/j.pocean.2007.04.008.

    Article  Google Scholar 

  • Schneider, C.A., W.S. Rasband, and K.W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9 (7):671–675.

    CAS  Article  Google Scholar 

  • SeaTemperature. 2021. World sea temperature. https://www.seatemperature.org/. Accessed 07 May 2021.

  • Silva, A., D.W. Skagen, A. Uriarte, J. Massé, M. Santos, V. Marques, P. Carrera, P. Beillois, G. Pestana, and C. Porteiro. 2009. Geographic variability of sardine dynamics in the Iberian Biscay region. ICES Journal of Marine Science 66 (3): 495–508. https://doi.org/10.1093/icesjms/fsn225.

    Article  Google Scholar 

  • Silva, A., S. Garrido, L. Ibaibarriaga, L. Pawlowski, I. Riveiro, V. Marques, F. Ramos, E. Duhamel, M. Iglesias, and P. Bryère. 2019. Adult-mediated connectivity and spatial population structure of sardine in the Bay of Biscay and Iberian coast. Deep Sea Research Part II: Topical Studies in Oceanography 159: 62–74. https://doi.org/10.1016/j.dsr2.2018.10.010.

    Article  Google Scholar 

  • Simberloff, D., J.-L. Martin, P. Genovesi, V. Maris, D.A. Wardle, J. Aronson, F. Courchamp, B. Galil, E. García-Berthou, and M. Pascal. 2013. Impacts of biological invasions: What’s what and the way forward. Trends in Ecology & Evolution 28 (1): 58–66. https://doi.org/10.1016/j.tree.2012.07.013.

    Article  Google Scholar 

  • Stachowicz, J.J., J.R. Terwin, R.B. Whitlatch, and R.W. Osman. 2002. Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions. Proceedings of the National Academy of Sciences 99 (24): 15497–15500. https://doi.org/10.1073/pnas.242437499.

    CAS  Article  Google Scholar 

  • Suaria, G., A. Pierucci, P. Zanello, E. Fanelli, S. Chiesa, and E. Azzurro. 2017. Percnon gibbesi (H. Milne Edwards, 1853) and Callinectes sapidus (Rathbun, 1896) in the Ligurian Sea: two additional invasive species detections made in collaboration with local fishermen. BioInvasions Records 6 (2): 14–7151. https://doi.org/10.3391/bir.2017.6.2.10.

    Article  Google Scholar 

  • Sydeman, W., M. García-Reyes, D. Schoeman, R. Rykaczewski, S. Thompson, B. Black, and S. Bograd. 2014. Climate change and wind intensification in coastal upwelling ecosystems. Science 345 (6192): 77–80. https://doi.org/10.1126/science.1251635.

    CAS  Article  Google Scholar 

  • Taybi, A.F., and Y. Mabrouki. 2020. The American blue crab Callinectes sapidus Rathbun, 1896 (Crustacea: Decapoda: Portunidae) is rapidly expanding through the Mediterranean coast of Morocco. Thalassas: an International Journal of Marine Sciences 36: 267–271. https://doi.org/10.1007/s41208-020-00204-0.

    Article  Google Scholar 

  • Teixeira, S., C. Andrade, and C. Romariz. 1989. Arco Caparica-Espichel. Nota prévia sobre a morfologia das praias e textura dos sedimentos. GEOLIS 3 (1–2): 207–211.

    Google Scholar 

  • Tendal, O., and H. Flintegaard. 2007. Et fund af en sjælden krabbe i danske farvande: Den blå svømmekrabbe, Callinectes sapidus (Crustacea; Decapoda; Portunidae). Flora Og Fauna 113 (3): 53–56.

    Google Scholar 

  • Tilburg, C.E., A.I. Dittel, and C.E. Epifanio. 2009. High concentrations of blue crab (Callinectes sapidus) larvae along the offshore edge of a coastal current: Effects of convergent circulation. Fisheries Oceanography 18 (3): 135–146. https://doi.org/10.1111/j.1365-2419.2009.00502.x.

    Article  Google Scholar 

  • Tulloch, A.I., H.P. Possingham, L.N. Joseph, J. Szabo, and T.G. Martin. 2013. Realising the full potential of citizen science monitoring programs. Biological Conservation 165: 128–138. https://doi.org/10.1016/j.biocon.2013.05.025.

    Article  Google Scholar 

  • Vasconcelos, P., A.N. Carvalho, D. Piló, F. Pereira, J. Encarnação, M.B. Gaspar, and M.A. Teodósio. 2019. Recent and consecutive records of the Atlantic blue crab (Callinectes sapidus Rathbun, 1896): rapid westward expansion and confirmed establishment along the southern Coast of Portugal. Thalassas: an International Journal of Marine Sciences 35 (2): 485–494. https://doi.org/10.1007/s41208-019-00163-1.

    Article  Google Scholar 

  • Verísimo, P., C. Bernárdez, E. González-Gurriarán, J. Freire, R. Muiño, and L. Fernández. 2011. Changes between consecutive broods in the fecundity of the spider crab, Maja brachydactyla. ICES Journal of Marine Science 68 (3): 472–478. https://doi.org/10.1093/icesjms/fsq164.

    Article  Google Scholar 

  • Welch, J.M., D. Rittschof, T.M. Bullock, and R.B. Forward Jr. 1997. Effects of chemical cues on settlement behavior of blue crab Callinectes sapidus postlarvae. Marine Ecology Progress Series 154: 143–153. https://doi.org/10.1007/s00227-002-0966-7.

    Article  Google Scholar 

  • Wolff, T. 1954. Tre ostamerikanske krabber fundet i Danmark. Flora Og Fauna 60 (1): 19–34.

    Google Scholar 

  • Young, A.M., and J.A. Elliott. 2020. Life history and population dynamics of green crabs (Carcinus maenas). Fishes 5 (1): 4. https://doi.org/10.3390/fishes5010004.

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the contribution of each citizen scientist to the NEMA campaign. We also acknowledge the help of Dr. Alexandra Cartaxana (National Museum of Natural History and Science, Lisbon) in clarifying two historical records of the Atlantic blue crab in the museum’s collection. The help provided by Fátima Gil and Paula Machaz is also much appreciated regarding all the information on records of the Atlantic blue crab from the collections of the Vasco da Gama Aquarium. This study received partial financial support by Portuguese national funds from the Foundation for Science and Technology (FCT, Portugal) through the project UIDB/04326/2020, and European funds from the Atlazul project (Poctep/Interreg 0755_ATLAZUL_6_E – Impulso da Aliança Litoral Atlântica para o Crescimento Azul). João Encarnação has a Ph.D. scholarship (SFRH/BD/140556/2018) funded by the Foundation for Science and Technology (FCT, Portugal). This is also contribution #1445 from the Institute of Environment at Florida International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Encarnação.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Communicated by Judith P. Grassle

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1 Graphical animation of Sea Surface Temperature (°C) in Gulf of Cadiz, Algarve (south Portugal), and southwest coast of Portugal, between June 01, 2018 and November 30, 2018. Supplementary file1 (MP4 4131 kb)

ESM 2 Graphical animation of Sea Surface Temperature (°C) in Gulf of Cadiz, Algarve (south Portugal), and southwest coast of Portugal, between June 01, 2019 and November 30, 2019. Supplementary file2 (MP4 4398 kb)

ESM 4 Graphical animation of daily sea surface current speed and direction in Gulf of Cadiz, Algarve (south Portugal), and southwest coast of Portugal, between September 09, 2018, and October 18, 2018. Supplementary file4 (MP4 6616 kb)

ESM 3

Oceanographic data on zonal and meridional velocity components used to calculate current velocity and direction in the study area between the Guadiana river mouth and Cape Sines. Supplementary file3 (XLSX 33 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Encarnação, J., Krug, L.A., Teodósio, M.A. et al. Coastal Countercurrents Increase Propagule Pressure of an Aquatic Invasive Species to an Area Where Previous Introductions Failed. Estuaries and Coasts (2022). https://doi.org/10.1007/s12237-022-01092-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12237-022-01092-8

Keywords

  • Atlantic blue crab
  • Callinectes sapidus
  • Biological invasions
  • Range expansion
  • Citizen science
  • Observational oceanography