Skip to main content

Advertisement

Log in

Insights into the Ecology of Foraminifera from the Most Hypersaline Lagoon in Brazil: Vermelha Lagoon

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Living foraminiferal assemblages were studied in 56 samples collected in Vermelha Lagoon considered the most hypersaline lagoon in Brazil. The study aimed to improve knowledge about the biodiversity and ecology of foraminifera in confined hypersaline environments and to assess the quality status of this ecosystem. The results revealed that foraminiferal assemblages were dominated by miliolids, mainly Quinqueloculina seminula, and Ammonia tepida (Rotalioidea). This assemblage was different from those usually reported in hypersaline lagoons with bottoms consisting of carbonate sand–rich sediments. Salt production in this lagoon produces hypertrophic conditions in the sediment, which has a severe impact on the foraminiferal community. The distribution of miliolid species is related to organic matter mainly associated to higher concentrations of carbohydrates. The rotaliids Haynesina concentrica, Bolivina variabilis, and Rosalina floridana were positively related to protein and lipid concentrations. The species Massilina protea, A. tepida, and Bolivina striatula were related to high salinity, while Miliolinella subrotunda presents a negative relationship to this variable. Based on the distribution of foraminiferal species and their responses to the analyzed environmental variables, five regions with different ecological characteristics and sediment trophic states were identified. Among these, the central pond can be considered the most favorable environment. The western pond and the vicinity area of stromatolite field in the eastern pond, with a high concentration of lipids and proteins, were the least favorable region due to eutrophication status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abou Ouf, M.A. 1992a. Benthic foraminifera in carbonate facies of a coastal sabkha, Red Sea, Saudi Arabia. Marine Geology 104: 187–191.

    Article  Google Scholar 

  • Abou Ouf, M.A. 1992b. Foraminiferal distribution in recent sediments of Jizan shelf, Red Sea Saudi Arabia. JKAU: Marine Science 3: 25–38.

    Google Scholar 

  • Abou Ouf, M.A., N.V.R. Durgaprasada, and R. Taj. 1988. Benthic foraminifera from littoral sediments of Al Lith-Al Qunfidah coast, southeastern Red Sea. Indian Journal of Geo-Marine Sciences 17: 217221.

  • Abu‑Zied, R.H., and O.I. Mohammed. 2019. Recent environmental changes of Al-Salam Lagoon as inferred from core sediment geochemistry and benthic foraminifera, Jeddah City, Saudi Arabia. Environmental Earth Sciences. https://doi.org/10.1007/s12665-019-8057-y.

  • Abu-Zied, R.H., and R.A. Bantan. 2013. Hypersaline benthic foraminifera from the Shuaiba Lagoon, eastern Red Sea, Saudi Arabia: Their environmental controls and usefulness in sea-level reconstruction. Marine Micropaleontology. https://doi.org/10.1016/j.marmicro.2013.07.005.

    Article  Google Scholar 

  • Abu-Zied, R.H., R.A. Bantan, A.S. Basaham, M.H. El Mamoney, and H.A. Al-Washmi. 2011b. Composition, distribution, and taphonomy of nearshore benthic foraminifera of the Farasan Islands, southern Red Sea, Saudi Arabia. Journal of Foraminiferal Research 41 (4): 349–362.

    Article  Google Scholar 

  • Abu-Zied, R.H., R.A. Bantan, and M.H. El Mamoney. 2011a. Present environmental status of the Shuaiba Lagoon, Red Sea Coast Saudi Arabia. JKAU: Marine Science 22: 159–179.

    Google Scholar 

  • Ahmed, F., and S. A.R. Sultan. 1992. The effect of meteorological forcing on the flushing of Shuaiba Lagoon on the eastern coast of the Red Sea. JKAU: Marine Science 3: 3–9.

  • Al-Barakati, A.M.A. 2010. Application of 2-D tidal model, Shoaiba Lagoon, eastern Red Sea Coast. Canadian Journal on Computing in Mathematics, Natural Sciences and Medicine 1: 9–20.

    Google Scholar 

  • Al-Maslamani, I., L. Le Vay, H. Kennedy, and D. Jones, 2007. Feeding ecology of the grooved tiger shrimp Penaeus semisulcatus De Haan (Decapoda: Penaeidae) in inshore waters of Qatar, Arabian Gulf. Marine Biology. https://doi.org/10.1007/s00227-006-0346-9.

  • Alve, E. 1995. Benthic foraminiferal responses to estuarine pollution: A review. Journal of Foraminiferal Research 25: 190–203.

    Article  Google Scholar 

  • Alve, E., and J.W. Murray. 1999. Marginal marine environments of the Skagerrak and Kattegat: A baseline study of living (stained) benthic foraminiferal ecology. Palaeogeography, Palaeoclimatology, Palaeoecology 146: 171–193.

    Article  Google Scholar 

  • Al-Washmi, H.A., and A.M. Gheith. 2003. Recognition of diagenetic dolomite and chemical surface features of the quartz grains in coastal sabkha sediments of the hypersaline Shuaiba Lagoon, eastern Red Sea Coast, Saudi Arabia. JKAU: Marine Science. https://doi.org/10.4197/mar.14-1.8.

  • Amao, A., M.A. Kaminski, and L. Babalola. 2018. Benthic foraminifera in hypersaline Salwa Bay (Saudi Arabia): An insight into future climate change in the Gulf region?. Journal of Foraminiferal Research. https://doi.org/10.2113/gsjfr.48.1.29.

    Article  Google Scholar 

  • Amao, A.O., M.A. Kaminski, and E. Setoyama. 2016. Diversity of foraminifera in a shallow restricted lagoon in Bahrain. Micropaleontology 62: 197–211.

    Article  Google Scholar 

  • Armynot du Châtelet, É., V. Bout-Roumazeilles, A. Riboulleau, and A. Trentesaux. 2009. Sediment (grain size and clay mineralogy) and organic matter quality control on living benthic foraminifera. Revue De Micropaleontologie. https://doi.org/10.1016/j.revmic.2008.10.002.

    Article  Google Scholar 

  • Ayala-Castañares, A., and L. Segura. 1968. Ecología y distribución de los foraminíferos recientes de la Laguna Madre, Tamaulipas, México. Buletin Del Instituto Geológico 87: 1–89.

    Google Scholar 

  • Bahafzalah, A.A.K., and M.A. El Askary. 1981. Sedimentological and micropaleontological investigations of the beach sands around Jeddah, Saudi Arabia. Bulletin of Faculty of Earth Sciences K.A.U. 4: 25–42.

  • Bahafzalah, A.A.K. 1979. Recent benthic foraminifera from Jeddah bay, Red Sea, Saudi Arabia. Neues Jahrbuch Für Geologie Und Paläontologie Abhandlungen 7: 385–398.

    Google Scholar 

  • Barbière, E.B. 1985. Condições climáticas dominantes na porção oriental da lagoa de Araruama, Rio de Janeiro e suas aplicações na diversidade do teor de salinidade. Caderno De Ciências a Terra 59: 34–35.

    Google Scholar 

  • Belart, P., I. Clemente, D. Raposo, R. Habib, E.K. Volino, A. Villar, M.V.A. Martins, L.F. Fontana, M.L. Lorini, G. Panigai, F. Frontalini, M.S.L. Figueiredo, S.C. Vasconcelos, and L. Laut. 2018. Living and dead Foraminifera as bioindicators in Saquarema Lagoon System. Latin American Journal of Aquatic Research. https://doi.org/10.3856/vol46-issue5-fulltext-18.

    Article  Google Scholar 

  • Belart, P., R. Habib, D. Raposo, I. Clemente, M.V.A. Martins, F. Frontalini, M.S.L. Figueiredo, M.L. Lorini, and L. Laut. 2019. Seasonal dynamics of benthic foraminiferal biocoenosis in the tropical Saquarema Lagoonal System (Brazil). Estuaries and Coasts. https://doi.org/10.1007/s12237-018-00514-w.

    Google Scholar 

  • Boltovskoy, E., 1965. Los Foraminiferos Recientes: biologia, métodos de estúdio, aplicación oceanográfica. Buenos Aires, EUDEBA.

  • Boltovskoy, E., G. Giussani, S. Watanabe, and R. Wright. 1980. Atlas of benthic shelf foraminifera of the southwest Atlantic. Boston: Junk.

    Book  Google Scholar 

  • Boltovskoy, E., and R. Wright. 1976. Recent foraminifera. Boston: Junk.

    Book  Google Scholar 

  • Buzas, M.A., L.C. Hayek, S.A. Reed, and J.A. Jett. 2002. Foraminiferal densities over five years in the Indian River Lagoon, Florida: A model of pulsating patches. Journal of Foraminiferal Research. https://doi.org/10.2113/0320068.

    Article  Google Scholar 

  • Chong, V., and A. Sasekumar. 1981. Food and feeding habits of the white prawn Penaeus merguiensis. Marine Ecology 5: 185–191.

    Article  Google Scholar 

  • Clemente, I.M.M.M., F.S. Silva, L.L.M. Laut, F. Frontalini, V.L. Costa, M.A.C. Rodrigues, E. Pereira, S. Bergamaschi, J.G. Mendonça Filho, and M.V.A Martins. 2015. Biochemical composition and foraminifera content of sediments for determining bottom sector environments in Guanabara Bay (Rio de Janeiro, Brazil). Journal of Coastal Research. https://doi.org/10.2112/JCOASTRES-D-14-00104.1.

  • CONAMA, Conselho Nacional de Meio Ambiente. 2005. Resolução N. 357, de 17 de março de 2005. Ministério do Meio Ambiente, Brasil. 3st ed. Rio de Janeiro: Consorcio Intermunicipal para a Gestão Ambiental das Bacias da Região dos Lagos, do Rio São João e Zona Costeira: Relatório de Situação Ano III (2012±2013).

  • Cotner, J.B., M.W. Suplee, N.W. Chen, and D.E. Shormann. 2004. Nutrient, sulfur and carbon dynamics in a hypersaline lagoon. Estuarine, Coastal and Shelf Science. https://doi.org/10.1016/j.ecss.2003.11.008.

    Article  Google Scholar 

  • Culver, S.J., and M.A. Buzas. 1995. The effects of anthropogenic habitat disturbance, habitat destruction, and global warming on shallow marine benthic foraminifera. Journal of Foraminiferal Research 25: 204–211.

  • DasSarma, S., and P. DasSarma. 2017. Halophiles. Chichester: John Wiley and Sons, Ltd. https://doi.org/10.1002/9780470015902.a0000394.pub4.

    Google Scholar 

  • Debenay, J.P., E. Geslin, B.B. Eichler, W. Duleba, F. Sylvestre, and P. Eichler. 2001. Foraminiferal assemblages in a hypersaline lagoon, Araruama (RJ) Brazil. Journal of Foraminiferal Research. https://doi.org/10.2113/0310133.

  • Debenay, J.P., J.J. Guillou, F. Redois, and E. Geslin. 2000. Distribution trends of foraminiferal assemblages in paralic environments: A base for using foraminifera as bioindicators. In Environmental micropaleontology: The application of microfossils to environmental geology, ed. R.E. Martin, 39–67. New York: Springer.

    Chapter  Google Scholar 

  • Dias, P.P.B.B., M.V.A. Martins, I.M.M.M. Clemente, T.G. Carelli, F.S. Silva, L.F. Fontana, M.L. Lorini, G. Panigai, R.H. Pinheiro, J.G. Mendonça-Filho, and L.L.M. Laut. 2017. Assessment of the trophic state of Saquarema Lagoonal System, Rio de Janeiro (Brazil). Journal of Sedimentary Environments. https://doi.org/10.12957/jse.2017.28194.

  • Dupuy, C., L. Rossignol, E. Geslin, and P.-Y. Pascal. 2010. Predation of mudflat meio-macrofaunal metazoans by a calcareous foraminifer, Ammonia tepida (Cushman, 1926). Journal of Foraminiferal Research. https://doi.org/10.2113/gsjfr.40.4.305.

    Article  Google Scholar 

  • Eichler, P.P.B., B.B. Eichler, L.B. Miranda, E.R.M. Pereira, P.B.P. Kfouri, F.M. Pimenta, A.L. Bérgamo, and C.G. Vilela. 2003. Benthic foraminiferal response to variations in temperature, salinity, dissolved oxygen and organic carbon, in the Guanabara Bay, Rio de Janeiro, Brazil. Anuário Do Instituto De Geociências 26: 36–51.

    Article  Google Scholar 

  • Farias, M.E., M.C. Rasuk, K.L. Gallagher, M. Contreras, D. Kurth, A.B. Fernandez, D. Poiré, F. Novoa, and P.T. Visscher. 2017. Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama. Chile: PLoS One. https://doi.org/10.1371/journal.pone.0186867.

    Book  Google Scholar 

  • Fontanier, C., F.J. Jorissen, L. Licari, A. Alexandre, P. Anschutz, and P. Carbonel. 2002. Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and microhabitats. Deep-Sea Research 49:751–785

  • Geslin, E., J.P. Debenay, W. Duleba, and C. Bonetti. 2002. Morphological abnormalities of foraminiferal tests in Brazilian environments: Comparison between polluted and non-polluted areas. Marine Micropaleontology 45: 151–168.

    Article  Google Scholar 

  • Gheith, A.M., and M.A. Abou Ouf. 1996. Textural characteristics, mineralogy and fauna in the shore zone sediments at Rabigh and Sharm al-Kharrar, eastern Red Sea Saudi Arabia. JKAU: Marine Science 7: 107–131.

    Google Scholar 

  • Gómez-León, A., G.M. Rodríguez-Figueroa, E. Shumilin, A.L. Carreño and A. Sánchez. 2018. Abundance and distribution of benthic foraminifera as indicators of the quality of the sedimentary environment in a subtropical lagoon, Gulf of California. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2018.03.013.

  • Gordon, C. 2000. Hypersaline lagoons as conservation habitats: macro-invertebrates at Muni Lagoon, Ghana. Biodiversity and Conservation. https://doi.org/10.1023/A:1008906503227.

  • Greiner, G.O.G. 1974. Environmental factors controlling the distribution of benthonic foraminifera. Breviora 420: 1–35.

    Google Scholar 

  • Guerra, L.V., F. Savergnini, F.S. Silva, M.C. Bernardes, and M.A.C. Crapez. 2011. Biochemical and microbiological tools for the evaluation of environmental quality of a coastal lagoon system in southern. Brazilian Journal of Biology. https://doi.org/10.1590/S1519-69842011000300016.

    Article  Google Scholar 

  • Haig, D.W. 1988. Miliolid foraminifera from inner neritic and mud facies of the Papuan Lagoon. Journal of Foraminiferal Research 18: 203–236.

    Article  Google Scholar 

  • Halfar, J. and J.C. Ingle. 2003. Modern warm-temperate and subtropical shallow-water benthic foraminifera of the southern Gulf of California, Mexico. Journal of Foraminiferal Research. https://doi.org/10.2113/0330309.

  • Hariri, M.S. 2008. Effect of hydrographic conditions on the ecology of benthic foraminifera in two different hypersaline lagoons, eastern Red Sea Coast, Kingdom of Saudi Arabia. JKAU: Marine Science 19: 3–13.

  • Hayward, B.W., H.R. Grenfell, G. Cairns and A. Smith. 1996. Environmental controls on benthic foraminiferal and thecamoebian associations in a tidal New Zealand inlet. Journal of Foraminifera Research 26(2): 150–171.

  • Hayward, B.W., T. Cedhagen, M. Kaminski, and O. Gross. 2020. World Foraminifera Database. http://www.marinespecies.org/foraminifera. Accessed 26 Apr 2021.

  • Herminda, L., and S.B.V. Carvalhal. 2005. Biolaminóides Calcários Holocênicos da Lagoa Vermelha. Anuário Do Instituto De Geociências 28: 59–70.

    Article  Google Scholar 

  • Hofker, J. 1976. Further studies on Caribbean foraminifera. Studies on the Fauna of Curaçao and Other Caribbean Islands 49: 1–256.

    Google Scholar 

  • Höhn, A., H.J. Tobschal, and J.E.L. Maddock. 1986. Biogeochemistry of a hypersaline lagoon east of Rio de Janeiro, Brazil. Science of the Total Environment 58: 175–185.

    Article  Google Scholar 

  • Iespa, A.A.C., C.M. Damazio-Iespa, and L. Borghi. 2012. Evolução paleoambiental da Lagoa Salgada utilizando microbialitos, com ênfase em microfácies carbonáticas. Geociências 31: 371–380.

    Google Scholar 

  • Javaux, E.J., and D.B. Scott. 2003. Illustration of modern benthic foraminifera from Bermuda and remarks on distribution in other subtropical/tropical areas. Palaeontologia Electronica. 6: 1–29.

    Google Scholar 

  • Kerkar, S. 2004. Ecology of hypersaline microorganisms. In Marine microbiology, facets and opportunities, ed. N. Ramaiah, 37–47. Goa: NIO.

  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel. 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift. https://doi.org/10.1127/0941-2948/2006/0130.

    Article  Google Scholar 

  • Larsen, H. 1980. Ecology of hypersaline environments. In Developments in sedimentology, ed. A. Nirsenbaum, 23–39. New York: Elsevier Scientific.

    Google Scholar 

  • Laut, L.L.M., I.A. Cabral, M.A.C. Rodrigues, F.S. Silva, V. Martins, T. Boski, A.I. Gomes, J.M.A. Dias, L.F. Fontana, V.M. Laut, and J.G. Mendonça-Filho. 2014. Compartimentos Ambientais do Estuário do Rio Arade, Sul de Portugal, com Base na Distribuição e Ecologia de Foraminíferos. Anuário Do Instituto De Geociências 37: 60–74.

    Article  Google Scholar 

  • Laut, L.L.M., I.M.M.M. Clemente, P. Belart, M.V.A. Martins, F. Frontalini, V.M. Laut, A. Gomes, T. Boski, M.L. Lorini, R.R. Fortes, and M.A.C. Rodrigues. 2016a. Multiproxies (benthic foraminifera, ostracods and biopolymers) approach applied to identify the environmental partitioning of the Guadiana River Estuary (Iberian Peninsula). Journal of Sedimentary Environments. https://doi.org/10.12957/JSE.2016.22534.

    Article  Google Scholar 

  • Laut, L.L.M., M.V.A. Martins, L.F. Fontana, F.S. Silva, J.G. Mendonça-Filho, I.M.M.M. Clemente, F. Frontalini, D. Raposo, P. Belart, and J. Ballalai. 2016b. Ecological status evaluation of Itaipu Lagoon (Niterói) based on biochemical composition of organic matter. Journal of Sedimentary Environments. https://doi.org/10.12957/jse.2016.25903.

    Article  Google Scholar 

  • Laut, L., A. Vilar, P. Belart, I. Clemente, L. Fontana, E. Pereira, and J. Ballalai. 2020. Organic matter compounds as a tool for trophic state characterization in a hypersaline environment: Araruama Lagoon, Brazil. Journal of South American Earth Sciences. https://doi.org/10.1016/j.jsames.2019.102403.

  • Laut, L., G. Matta, G. Camara, P. Belart, I. Clemente, J. Ballalai, E. Volino, and E.C.G. Couto. 2021a. Living and dead foraminifera assemblages as environmental indicators in the Almada River Estuary, Ilhéus, northeastern Brazil. Journal of South American Earth Sciences. https://doi.org/10.1016/j.jsames.2020.102883.

    Article  Google Scholar 

  • Laut, L., I. Clemente, and W. Louzada. 2021b. The influence of organic matter compounds on foraminiferal and ostracode assemblages: A case study from the Maricá-Guarapina Lagoon System (Rio de Janeiro, Brazil). Micropaleontology 67: 447–458.

    Article  Google Scholar 

  • Laut, L., I. Clemente, M.V.A. Martins, F. Frontalini, D. Raposo, P. Belart, R. Habib, R. Fortes, and M.L. Lorini. 2017a. Benthic foraminifera and Thecamoebians of Godineau River Estuary, Gulf of Paria, Trinidad Island. Anuário do Instituto de Geociências. https://doi.org/10.11137/2017_2_118_143.

  • Laut, L., M.S.L. Figueiredo, M.L. Lorini, P. Belart, I. Clemente, M.V.A. Martins, J.G. Mendonça Filho, and V. Laut. 2019. Diatoms from the most hypersaline lagoon in Brazil: Vermelha lagoon. Continental Shelf Research. https://doi.org/10.1016/j.csr.2019.05.001.

    Article  Google Scholar 

  • Laut, L., M.V.A. Martins, F. Frontalini, J.M. Ballalai, P. Belart, R. Habib, L.F. Fontana, I.M.M.M. Clemente, M.L. Lorini, J.G. Mendonca Filho, V.M. Laut, and M.S.L. Figueiredo. 2017b. Assessment of the trophic state of a hypersaline-carbonate environment: Vermelha Lagoon (Brazil). PLoS One. https://doi.org/10.1371/journal.pone.0184819.

    Article  Google Scholar 

  • Loeblich, A.R., and H. Tappan. 1987. Foraminiferal genera and their classification. New York: Van Nostrand Reinhold Company.

    Google Scholar 

  • Lopes, C.E.A., A.C.D. Teixeira, and J.E.L. Maddock. 1986. Absorption of metals by microbial mats and sediments of Lagoa Vermelha, Brazil. The Science of the Total Environment 58: 55–62.

    Article  CAS  Google Scholar 

  • Magurran, A.E. 1988. Ecological diversity and its measurement. University Press: Princeton.

    Book  Google Scholar 

  • Malaquias, M.A.E., E. Bericibar, and D. Reid. 2009. Reassessment of the trophic position of Bullidae (Gastropoda: Cephalaspidea) and the importance of diet in the evolution of cephalaspidean gastropods. Journal of Zoology 227: 88–97.

  • Mansur, K., E. Guedes, M.G. Alves, V. Nascimento, L.F. Pressi, N. Costa Jr., A. Pessanha, L. H. Nascimento, and G. Vasconcelos. 2012. Geoparques, costões e lagunas do estado do Rio de Janeiro, Geoparques do Brasil/Propostas. Rio de Janeiro, CPRM.

  • Martins, M.V.A., A.F.S. Pinto, F. Frontalini, M.C.M. Fonseca, D.L. Terroso, L.L.M. Laut, N. Zaaboub, M.A.C. Rodrigues, and F. Rocha. 2016a. Can benthic foraminifera be used as bioindicators of pollution in areas with a wide range of physicochemical variability? Estuarine, Coastal and Shelf Science. https://doi.org/10.1016/j.ecss.2016.10.011.

    Article  Google Scholar 

  • Martins, M.V.A., M.A. Helali, N. Zaaboub, I. Omrane, F. Frontalini, D. Reis, H. Portela, I.M.M.M. Clemente, L. Nogueira, E. Pereira, P. Miranda, M. El Bour, and L. Aleya. 2016b. Organic matter quantity and quality, metals availability and foraminifera assemblages as environmental proxy applied to the Bizerte Lagoon (Tunisia). Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2016.02.032.

    Article  Google Scholar 

  • Martins, M.V.A., N. Zaaboub, L. Aleya, F. Frontalini, E. Pereira, P. Miranda, M. Mane, F. Rocha, and L. Laut M., and El Bour,. 2015a. Environmental quality assessment of Bizerte Lagoon (Tunisia) using living foraminifera assemblages and a multiproxy approach. PLoS One. https://doi.org/10.1016/j.ecss.2016.10.011.

    Google Scholar 

  • Martins, M.V.A., and V.C.R.D. Gomes. 2004. Foraminíferos da Margem Continental NW Ibérica: Sistemática. Ecologia e Distribuição: Aveiro, Universidade de Aveiro.

    Google Scholar 

  • Martins, V.A., F. Silva, L.M.L. Laut, F. Frontalini, I.M. Clemente, P. Miranda, R. Figueira, S.H.M. Sousa, and J.M.A. Dias. 2015b. Response of benthic foraminifera to organic matter quantity and quality and bioavailable concentrations of metals in Aveiro Lagoon (Portugal). PLoS One. https://doi.org/10.1371/journal.pone.0118077.

    Google Scholar 

  • Mckenzie, J.A., and C. Vasconcelos. 2009. Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: Historical developments and new perspectives. Sedimentology. https://doi.org/10.1111/j.1365-3091.2008.01027.x.

    Article  Google Scholar 

  • Mendonça-Filho, J.G., T.R. Menezes, E. Oliveira, and M.B. Iemma. 2003. Caracterização da contaminação por petróleo e seus derivados na Baía de Guanabara: Aplicação de técnicas organogeoquímicas e organopetrográficas. Anuário Do Instituto De Geociências 26: 69–78.

    Article  Google Scholar 

  • Mota, F., S. Carvalhal-Gomes, P. Gonçalves, F. Silva, J. Mendonça Filho, and D. Flores. 2016. Characterization of the organic matter present in carbonate sediments of Lagoa Vermelha (Rio de Janeiro, Brazil). Comunicações Geológicas 103: 113–116.

    CAS  Google Scholar 

  • Moreira da Silva, P.C. 1968. O fenômeno da ressurgência na costa meridional 943 brasileira. Instituto De Pesquisas Da Marinha, Rio De Janeiro 24: 1–31.

    Google Scholar 

  • Moreira da Silva, P.C. 1973. A ressurgência em Cabo Frio. Instituto De Pesquisas Da Marinha, Rio De Janeiro 78: 1–56.

    Google Scholar 

  • Murray, J.W. 1965a. The Foraminiferida of the Persian Gulf. 1. Rosalina adhaerens sp. nov. Annals and Magazine of Natural History. https://doi.org/10.1080/00222936508651542.

  • Murray, J.W. 1965b. The Foraminiferida of the Persian Gulf. The Abu Dhabi region. Palaeogeography, Palaeoclimatology, Palaeoecology. https://doi.org/10.1016/0031-0182(65)90021-0.

  • Murray, J. W. 1969. The foraminiferida of the Persian Gulf. 6. Living forms in the Abu Dhabi Region. Journal of Natural History. https://doi.org/10.1080/00222937000770061.

  • Murray, J.W. 1970. The foraminifera of the hypersaline Abu Dhabi Lagoon, Persian Gulf. Lethaia. https://doi.org/10.1111/j.1502-3931.1970.tb01263.x.

  • Murray, J.W. 2006. Ecology and applications of benthic foraminifera. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Mwatha, W.E., and W.D. Grant. 1993. Natronobacterium vacuolata, new species, a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya. International Journal of Systematic Bacteriology 43: 401–404.

    Article  Google Scholar 

  • Oliveira, L., R. Nascimento, L. Krau, and A. Miranda. 1955. Observações biogeográficas e hidrobiológias sobre a lagoa de Maricá. Memórias Do Instituto Oswaldo Cruz 53: 171–227.

    Article  Google Scholar 

  • Oren, A. 2018. Salt lakes, climate change, and human impact: A microbiologist’s perspective. In Air and water components of the environment, ed. G. Şerban, R. Batinas, T. Tudose, C. Horváth, A. Croitoru, and I. Holobaca, 163–170. Cluj-Napoca: Babes-Bolyai University.

    Google Scholar 

  • Paez-Osuna, F., H. Bojórquez-Leyva, and C. Green-Ruiz. 1998. Total carbohydrates: Organic carbon in lagoon sediments as an indicator of organic effluents from agriculture and sugar-cane industry. Environmental Pollution 102: 321–326.

    Article  CAS  Google Scholar 

  • Parker, J.H., and E. Gischler. 2011. Modern foraminiferal distribution and diversity in two atolls from the Maldives, Indian Ocean. Marine Micropaleontology. https://doi.org/10.1016/j.marmicro.2010.09.007.

  • Paul, V.G., and M.R. Mormile. 2017. A case for the protection of saline and hypersaline environments: A microbiological perspective. FEMS Microbiology Ecology. https://doi.org/10.1093/femsec/fix091.

    Article  Google Scholar 

  • Pawlowski, J., and M. Holzmann. 2008. Diversity and geographic distribution of benthic foraminifera: A molecular perspective. Biodiversity and Conservation. https://doi.org/10.1007/s10531-007-9253-8.

    Article  Google Scholar 

  • Phleger, F.B., and R.R. Lankford. 1957. Seasonal occurrences of living benthonic foraminifera in some Texas bays. Contributions of the Cushman Foundation for Foraminiferal Research 8: 93–105.

    Google Scholar 

  • Poag, C.W. 1981. Ecologic atlas of benthic foraminifera of the Gulf of Mexico. Massachusetts, Marine Science International.

  • Primo, P.B.S., and C.R.S.F. Bizerril. 2002. Lagoa de Araruama: Perfil Ambiental do Maior Ecossistema Lagunar Hipersalino do Mundo. Rio de Janeiro: SEMADS.

    Google Scholar 

  • Raposo, D., I. Clemente, M. Figueiredo, A. Vilar, M.L. Lorini, F. Frontalini, V. Martins, P. Belart, L. Fontana, R. Habib, and L. Laut. 2016. Benthic foraminiferal and organic matter compounds as proxies of environmental quality in a tropical coastal lagoon: The Itaipu Lagoon (Brazil). Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2018.02.018.

    Article  Google Scholar 

  • Rodriguez-Valera, F. 1988. Characteristics and microbial ecology of hypersaline environments. In Halophilic bacteria, ed. F. Rodriguez-Valera, 3–30. Boca Raton: Florida.

    Google Scholar 

  • Ruiz, F.M., M.L. González, J.G. Pendón, M. Abad, M. Olías and J.M. Muñoz. 2005. Correlation between foraminifera and sedimentary environments in recent estuaries of Southwestern Spain: applications to Holocene reconstructions Quaternary International. https://doi.org/10.1016/j.quaint.2005.05.002.

  • Samir, A.M. 2000. The response of benthic foraminifera and ostracods to various pollution sources: A study from two lagoons in Egypt. Journal of Foraminiferal Research 30: 83–98.

    Article  Google Scholar 

  • Samir, A.M., and A.B. El-Din. 2001. Benthic foraminiferal assemblages and morphological abnormalities as pollution proxies in two Egyptian bays. Marine Micropaleontology 4: 193–227.

    Article  Google Scholar 

  • Santelli, R.C.L. 1988. Estudos de isótopos estáveis em sedimentos carbonáticos da Lagoa Vermelha – RJ. (Doctoral thesis). Rio de Janeiro: Pontifícia Universidade Católica do Rio de Janeiro, 95p.

  • Schönfeld, J. 2001. Benthic foraminifera and pore-water oxygen profiles.A re-assessment of species boundary conditions at the western Iberian margin. Journal of Foraminiferal Research, 31: 86–107.

  • Schönfeld, J., E. Alve, E. Geslin, F. Jorissen, S. Korsun, S. Spezzaferri, S. Abramovich, A. Almogi-Labin, E.A. du Chatelet, C. Barras, L. Bergamin, E. Bicchi, V. Bouchet, A. Cearreta, L. Di Bella, N. Dijkstra, S.T. Disaro, L. Ferraro, F. Frontalini, G. Gennari, E. Golikova, K. Haynert, S. Hess, K. Husum, V. Martins, M. McGann, S. Oron, E. Romano, S.M. Sousa, and A. Tsujimoto. 2012. The FOBIMO (FOraminiferal BIo-MOnitoring) initiative—towards a standardized protocol for soft-bottom benthic foraminiferal monitoring studies. Marine Micropaleontology. https://doi.org/10.1016/j.marmicro.2012.06.001.

    Article  Google Scholar 

  • Sen Gupta, B.K., L.E. Smith, and M.L. Machain-Castillo. 2009. Foraminifera of the Gulf of Mexico. In Gulf of Mexico–origins, waters and biota biodiversity, ed. D.L. Felder and D.K. Camp, 87–129. Texas: Texas A and M Press.

    Google Scholar 

  • Shadkam, S., F. Ludwig, M.T.H. Vliet, A. Pastor, and P. Kabat. 2016. Preserving the world second largest hypersaline lake under future irrigation and climate change. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2016.03.190.

    Article  Google Scholar 

  • Shannon, C., and W. Weaver. 1948. The mathematical theory of communication. Bell System Technical Journal. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x.

    Article  Google Scholar 

  • Sharifi, A.R., I.W. Croudace, and R.L. Austin.1991. Benthic foraminiferids as pollution indicators in Southampton Water, southern England, UK. Journal of Micropaleontology 10: 109–113.

  • Silva e Silva, L. 2004. Composição paleobiológica e tipos morfológicos das construções estromatolíticas da lagoa Vermelha, RJ, Brasil. Revista Brasileira De Paleontologia 7: 193–198.

    Article  Google Scholar 

  • Silva e Silva, L.H., M.C.E. Senra, T.C.L.M. Faruolo, S.B.V. Carvalhal, S.A.P.M.N. Alves, C.M. Damazio, V.T.A. Shimizu, R.C. Santos, and A.A.C. Iespa. 2004. Composição paleobiológica das construções estromatolíticas da Lagoa Vermelha RJ, Brasil. Revista Brasileira de Paleontologia 7: 193–198.

    Article  Google Scholar 

  • Siqueira, G.W., E.S. Braga, M.M. Mahíques, and F.M. Aprile. 2006. Determinação da matéria orgânica e razões C/N e C/S em sedimentos de fundo do estuário de Santos- SP/Brasil. Arquivos De Ciências Do Mar-Fortaleza 39: 18–27.

    Google Scholar 

  • Van der Zwaan, G.J., A.P. Duijnsteea, M. Idulka, S.R. Ernsta, N.T. Janninka, and T.J. Kouwenhoven. 2000. Benthic foraminifers: Proxies or problems?. A review of paleocological concepts. Earth-Science Reviews 46: 213–236.

    Article  Google Scholar 

  • Vasconcelos, C., and J.A. Mckenzie. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). Journal of Sedimentary Research 67: 378–390.

    CAS  Google Scholar 

  • Vasconcelos, C., R. Warthmann, J.A. McKenzie, P.T. Visscher, A.G. Bittermann, and Y. van Lith. 2006. Lithifying microbial mats in Lagoa Vermelha, Brazil: Modern Precambrian relics?. Sedimentary Geology. https://doi.org/10.1016/j.sedgeo.2005.12.022.

    Article  Google Scholar 

  • Ventosa, A. 2006. Unusual microorganisms from unusual habitats: Hypersaline environments. In Prokaryotic diversity: Mechanisms and significance, ed. N.A. Logan, H.M. Lappin-Scott, and P.F.C. Oyston, 223–253. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Vilela, C.G., A.E.S. Sanjinés, R.O. Ghiselli Jr., J.G. Mendonça Filho, J. Batista-Neto, and C.F. Barbosa. 2003. Search for bioindicators of pollution in the Guanabara Bay: Integrations of ecologic patterns. Anuário Do Instituto De Geociências 26: 25–35.

    Article  Google Scholar 

  • Vilela, C.G., D.S. Batista, J.A. Baptista-Neto, M. Crapez, and J.J. Mcallister. 2004. Benthic foraminifera distribution in high polluted sediments from Niterói Harbor (Guanabara Bay), Rio de Janeiro, Brazil. Anais Da Academia Brasileira De Ciências 76: 161–171.

    Article  CAS  Google Scholar 

  • Wukovits, J., M. Oberrauch, A.J. Enge, and P. Heinz. 2018. The distinct roles of two intertidal foraminiferal species in phytodetrital carbon and nitrogen fluxes – results from laboratory feeding experiments. Biogeosciences. https://doi.org/10.5194/bg-15-6185-2018.

  • Yang, J., L. Ma, H. Jiang, G. Wu, and H. Dong. 2016. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Scientific Reports. https://doi.org/10.1038/srep25078.

    Google Scholar 

  • Yanko, V., A.J., Arnold and W.C., Parker, 1999. Effects of marine pollution on benthic foraminifera. In Modern foraminifera, ed. B.K. Sen Gupta, 217–235. New York: Kluwer Academic Publications.

  • Yanko, V., J. Kronfeld, and A. Flexer. 1994. Response of benthic foraminifera to various pollution sources: Implications for pollution monitoring. Journal of Foraminiferal Research 24: 1–17.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the projects of National Council for Scientific and Technological Development—CNPq (Universal 445830/2014-0) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (RJ E26/11.399/2012). The authors would like to thank to CAPES for the PhD Fellowship of Pierre Belart (Finance code 001). Virginia Martins would like to thank the CNPq and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) for the research grants (process 302676/2019-8 and process 202.927/2019, respectively). Lazaro Laut would like to thank the CNPq for the research grant (process 302582/2019-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lazaro Laut.

Additional information

Communicated by James L. Pinckney

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 138 KB)

Supplementary file2 (DOCX 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laut, L., Belart, P., Carelli, T. et al. Insights into the Ecology of Foraminifera from the Most Hypersaline Lagoon in Brazil: Vermelha Lagoon. Estuaries and Coasts 45, 2632–2649 (2022). https://doi.org/10.1007/s12237-022-01073-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-022-01073-x

Keywords

Navigation