Skip to main content

Estimating the Influence of Oyster Reef Chains on Freshwater Detention at the Estuary Scale Using Landsat-8 Imagery

Abstract

Oyster reef chains grow in response to local hydrodynamics and can redirect flows, particularly when reef chains grow perpendicular to freshwater flow paths. Singularly, oyster reef chains can act as porous dams that may facilitate nearshore accumulation of fresh or low-salinity water, in turn creating intermediate salinities that support oyster growth and estuarine conditions. However, oyster-driven freshwater detention has only been confirmed by limited, point-scale observational data, and simplified models. Oyster reef-driven freshwater detention in real ecosystems at the estuary scale remains largely unexplored. In this study, we analyzed the visible bands in 30-m resolution remote sensing (RS) images recorded by the Operational Land Imager aboard Landsat-8 to characterize the freshwater detention effect of oyster reef chains across a set of hydrologic conditions. Our results support prior findings indicating that 30-m resolution RS images recorded by the Operational Land Imager aboard Landsat-8 are useful for analyzing coastal dynamics after atmospheric correction, despite having been originally designed for terrestrial studies. Statistical models of water-leaving reflectance revealed that freshwater detention by oyster reefs was evident across the estuary, with the greatest effect occurring in the region closest to shore. Additionally, statistical modeling results and spatial patterns apparent in the satellite images suggested that reef-driven freshwater detention occurred under high riverine discharge conditions, but was less evident when flow was low. Beyond offering insight on the potential role of oyster reefs as mediators of estuarine hydrology, this study presents a transferable methodological framework for exploring estuarine biophysical feedbacks in blackwater river estuaries using satellite remote sensing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Baith, K., R. Lindasay, G. Fu, and C.R. McClain. 2001. SeaDAS, a data analysis system for ocean-color satellite sensors. Eos Transactions AGU 82 (202): 18.

    Google Scholar 

  • Bales, Jerad D., Stewart A. Tomlinson, and Gina Tillis. 2006. Flow and salt transport in the Suwannee River Estuary, Florida, 1999-2000: analysis of data and three-dimensional simulations. US Geological Survey Professional Paper. https://doi.org/10.3133/pp1656b.

  • Beck, Michael W., Robert D. Brumbaugh, Laura Airoldi, Alvar Carranza, Loren D. Coen, Christine Crawford, Omar Defeo, Graham J. Edgar, Boze Hancock, Matthew C. Kay, Hunter S. Lenihan, Mark W. Luckenbach, Caitlyn L. Toropova, Guofan Zhang, and Ximing Guo. 2011. Oyster reefs at risk and recommendations for conservation, restoration, and management. BioScience 61: 107–116. https://doi.org/10.1525/bio.2011.61.2.5.

    Article  Google Scholar 

  • Bledsoe, Erin L., and Edward J. Phlips. 2000. Relationships between phytoplankton standing crop and physical, chemical, and biological gradients in the Suwannee River and plume region, U.S.A. Estuaries 23: 458–473. https://doi.org/10.1007/BF02694946.

    Article  Google Scholar 

  • Bowers, D.G., and H.L. Brett. 2008. The relationship between CDOM and salinity in estuaries: an analytical and graphical solution. Journal of Marine Systems 73: 1–7. https://doi.org/10.1016/j.jmarsys.2007.07.001.

    Article  Google Scholar 

  • Bowling, L.C., M.S. Steane, and P.A. Tyler. 1986. The spectral distribution and attenuation of underwater irradiance in Tasmanian inland waters. Freshwater Biology 16: 313–335. https://doi.org/10.1111/j.1365-2427.1986.tb00974.x.

    Article  Google Scholar 

  • Brezonik, Patrick, Kevin D. Menken, and Marvin Bauer. 2005. Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake and Reservoir Management 21: 373–382. https://doi.org/10.1080/07438140509354442.

    Article  Google Scholar 

  • Brun, Philipp, Meike Vogt, Mark R. Payne, Nicolas Gruber, Colleen J. O’Brien, Erik T. Buitenhuis, Corinne Le Quéré, Karine Leblanc, and Ya-Wei Luo. 2015. Ecological niches of open ocean phytoplankton taxa. Limnology and Oceanography 60 (3): 1020–1038. https://doi.org/10.1002/lno.10074.

    Article  Google Scholar 

  • Cao, Fang, Maria Tzortziou, Chuanmin Hu, Antonio Mannino, Cédric G. Fichot, Rossana Del Vecchio, Raymond G. Najjar, and Michael Novak. 2018. Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins. Remote Sensing of Environment 205. Elsevier: 151–165. https://doi.org/10.1016/j.rse.2017.11.014.

    Article  Google Scholar 

  • Carder, Kendall L., Robert G. Steward, George R. Harvey, and Peter B. Ortner. 1989. Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll. Limnology and Oceanography 34: 68–81. https://doi.org/10.4319/lo.1989.34.1.0068.

    CAS  Article  Google Scholar 

  • Del Castillo, Carlos E. 2007. Remote sensing of organic matter in coastal waters. In Remote Sensing of Coastal Aquatic Environments: Technologies, Techniques and Applications, ed. Richard L. Miller, Carlos E. Del Castillo, and Brent A. McKee, 1st ed., 7:157–180. Springer.

  • Chaichitehrani, Nazanin, Eurico J. D’Sa, Dong S. Ko, Nan D. Walker, Christopher L. Osburn, and Robert F. Chen. 2014. Colored dissolved organic matter dynamics in the northern Gulf of Mexico from ocean color and numerical model results. Journal of Coastal Research 296: 800–814.

    Article  Google Scholar 

  • Colden, Allison M., Kelsey A. Fall, Grace M. Cartwright, and Carl T. Friedrichs. 2016. Sediment suspension and deposition across restored oyster reefs of varying orientation to flow: implications for restoration. Estuaries and Coasts 39. Estuaries and Coasts: 1435–1448. https://doi.org/10.1007/s12237-016-0096-y.

    Article  Google Scholar 

  • Colden, Allison M., Robert J. Latour, and Romuald N. Lipcius. 2017. Reef height drives threshold dynamics of restored oyster reefs. Marine Ecology Progress Series 582: 1–13. https://doi.org/10.3354/meps12362.

    Article  Google Scholar 

  • Constantin, Sorin, David Doxaran, and Stefan Constantinescu. 2016. Estimation of water turbidity and analysis of its spatio-temporal variability in the Danube River plume (Black Sea) using MODIS satellite data. Continental Shelf Research 112: 14–30. https://doi.org/10.1016/j.csr.2015.11.009.

    Article  Google Scholar 

  • Devlin, Michelle J., Caroline Petus, Eduardo da Silva, Dieter Tracey, Nicholas H. Wolff, Jane Waterhouse, and Jon Brodie. 2015. Water quality and river plume monitoring in the Great Barrier Reef: an overview of methods based on ocean colour satellite data. Remote Sensing 7: 12909–12941. https://doi.org/10.3390/rs71012909.

    Article  Google Scholar 

  • Drusch, M., U. Del Bello, S. Carlier, O. Colin, V. Fernandez, F. Gascon, B. Hoersch, et al. 2012. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment 120: 25–36. https://doi.org/10.1016/j.rse.2011.11.026.

    Article  Google Scholar 

  • Farrell, Mark D., John Good, David Hornsby, Anthony Janicki, Rob Mattson, and Sam Upchurch. 2005. Technical Report, MFL Establishment for the Lower Suwannee River & Estuary, Little Fanning, Fanning, & Mannattee Springs.

  • Ferrari, G.M., and M.D. Dowell. 1998. CDOM absorption characteristics with relation to fluorescence and salinity in coastal areas of the southern Baltic Sea. Estuarine, Coastal and Shelf Science 47: 91–105. https://doi.org/10.1006/ecss.1997.0309.

    CAS  Article  Google Scholar 

  • Franz, Bryan A., Sean W. Bailey, Norman Kuring, and P. Jeremy Werdell. 2015. Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS. Journal of Applied Remote Sensing 9: 96017–96070.

    Article  Google Scholar 

  • Frederick, Peter. 2021. Oyster reef heights in the Suwannee Sound. Unpublished data.

  • Gordon, Howard R. 1978. Removal of atmospheric effects from satellite imagery of the oceans. Applied Optics 17: 1631. https://doi.org/10.1364/ao.17.001631.

    CAS  Article  Google Scholar 

  • Grabowski, Jonathan H., and Charles H. Peterson. 2007. Restoring oyster reefs to recover ecosystem services. In Ecosystem engineers: plants to protists, ed. Kim Cuddington, James E. Byers, William G. Wilson, and Alan Hastings, 281–298. Elsevier, Inc.: Academies Press.

    Chapter  Google Scholar 

  • Grabowski, Jonathan H., Robert D. Brumbaugh, Robert F. Conrad, Andrew G. Keeler, James J. Opaluch, Charles H. Peterson, Michael F. Piehler, Sean P. Powers, and Ashley R. Smyth. 2012. Economic valuation of ecosystem services provided by oyster reefs. BioScience 62: 900–909. https://doi.org/10.1525/bio.2012.62.10.10.

    Article  Google Scholar 

  • Griffin, Claire G., Karen E. Frey, John Rogan, and Robert M. Holmes. 2011. Spatial and interannual variability of dissolved organic matter in the Kolyma River, East Siberia, observed using satellite imagery. Journal of Geophysical Research – Biogeosciences 116: 1–12. https://doi.org/10.1029/2010JG001634.

    CAS  Article  Google Scholar 

  • Griffin, C.G., J.W. McClelland, K.E. Frey, G. Fiske, and R.M. Holmes. 2018. Quantifying CDOM and DOC in major Arctic rivers during ice-free conditions using Landsat TM and ETM+ data. Remote Sensing of Environment 209: 395–409. https://doi.org/10.1016/j.rse.2018.02.060.

    Article  Google Scholar 

  • Haven, Dexter, and James Whitcomb. 1983. The origin and extent of oyster reefs in the James River, Virginia. Journal of Shellfish Research 3: 141–151.

    Google Scholar 

  • Havens, K. 2015. Climate change: effects on salinity in florida’s estuaries and responses of oysters, seagrass, and other animal and plant life. In EDIS document #SGEF-218. Gainesville: FL.

    Google Scholar 

  • Hedgpeth, Joel W. 1953. An introduction to zoogeography of the northwestern Gulf of Mexico with reference to the invertebrate fauna. Publications of the Institute of Marine Science 3: 170–224.

    Google Scholar 

  • Hernández, Bersoza, Robert D. Ada, Peter Frederick Brumbaugh, Raymond Grizzle, Mark W. Luckenbach, Charles H. Peterson, and Christine Angelini. 2018. Restoring the eastern oyster: how much progress has been made in 53 years? Frontiers in Ecology and the Environment 16: 463–471. https://doi.org/10.1002/fee.1935.

    Article  Google Scholar 

  • Jordan-Cooley, William C., Romuald N. Lipcius, Leah B. Shaw, Jian Shen, and Junping Shi. 2011. Bistability in a differential equation model of oyster reef height and sediment accumulation. Journal of Theoretical Biology 289. Elsevier: 1–11. https://doi.org/10.1016/j.jtbi.2011.08.013.

    Article  Google Scholar 

  • Joshi, Ishan D., Eurico J. D’Sa, Christopher L. Osburn, Thomas S. Bianchi, Dong S. Ko, Diana Oviedo-Vargas, Ana R. Arellano, and Nicholas D. Ward. 2017. Assessing chromophoric dissolved organic matter (CDOM) distribution, stocks, and fluxes in Apalachicola Bay using combined field, VIIRS ocean color, and model observations. Remote Sensing of Environment 191. The Authors: 359–372. https://doi.org/10.1016/j.rse.2017.01.039.

    Article  Google Scholar 

  • Ju, Junchang, and David P. Roy. 2008. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sensing of Environment 112: 1196–1211. https://doi.org/10.1016/j.rse.2007.08.011.

    Article  Google Scholar 

  • Kaplan, David, Maitane Olabarrieta, P. Frederick, and Arnoldo Valle-Levinson. 2016. Freshwater detention by oyster reefs: quantifying a keystone ecosystem service. PLoS One: 1–12. https://doi.org/10.1371/journal.pone.0167694.

  • Katz, Brian G., Rodney S. DeHan, Joshua J. Hirten, and John S. Catches. 1997. Interactions between ground water and surface water in the Suwannee River basin. Florida. Journal of the American Water Resources Association 33: 1237–1254.

    CAS  Article  Google Scholar 

  • Kennedy, Victor S., and Lawrence P. Sanford. 1999. The Morphology and physical oceanography of unexploited oyster reefs in North America. In Oyster reef habitat restoration: a synopsis and synthesis of approaches, proceedings from the symposium, ed. M. W. Luckenbach, Roger Mann, and J. A. Wesson, 25–46. Williamsburg, VA: Virginia Institute of Marine Science, College of William and Mary. 10.21220/V5NK51.

  • Kutser, Tiit, Birgot Paavel, Charles Verpoorter, Martin Ligi, Tuuli Soomets, Kaire Toming, and Gema Casal. 2016. Remote sensing of black lakes and using 810 nm reflectance peak for retrieving water quality parameters of optically complex waters. Remote Sensing 8. https://doi.org/10.3390/rs8060497.

  • Le, Chengfeng, John C. Lehrter, Chuanmin Hu, and Daniel R. Obenour. 2016. Satellite-based empirical models linking river plume dynamics with hypoxic area and volume. Geophysical Research Letters 43: 2693–2699. https://doi.org/10.1002/2015GL067521.

    CAS  Article  Google Scholar 

  • Lenihan, Hunter S. 1999. Physical – biological coupling on oyster reefs: how habitat structure influences individual performance. Ecological Monographs 69: 251–275. https://doi.org/10.1890/0012-9615(1999)069[0251:PBCOOR]2.0.CO;2.

    Article  Google Scholar 

  • Li, Jian, and David P. Roy. 2017. A global analysis of Sentinel-2a, Sentinel-2b and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sensing 9. https://doi.org/10.3390/rs9090902.

  • Lowe, Michael R., Troy Sehlinger, Thomas M. Soniat, and Megan K. La Peyre. 2017. Interactive effects of water temperature and salinity on growth and mortality of eastern oysters, Crassostrea virginica: a meta-analysis using 40 years of monitoring data. Journal of Shellfish Research 36: 683–697. https://doi.org/10.2983/035.036.0318.

    Article  Google Scholar 

  • Maritorena, Stéphane, André Morel, and Bernard Gentili. 1994. Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo. Limnology and Oceanography 39: 1689–1703. https://doi.org/10.4319/lo.1994.39.7.1689.

    Article  Google Scholar 

  • Marshall, Aguilar, Benoit Lebreton Danielle, Terence Palmer, De Kevin Santiago, and Jennifer Beseres Pollack. 2019. Salinity disturbance affects faunal community composition and organic matter on a restored. Crassostrea virginica oyster reef. Estuarine, Coastal and Shelf Science. Elsevier 106267. https://doi.org/10.1016/j.ecss.2019.106267.

  • McCormick-Ray, M. Geraldine. 1998. Oyster reefs in 1878 seascape pattern - Winslow revisited. Estuaries 21: 784–800. https://doi.org/10.2307/1353281.

    Article  Google Scholar 

  • McCormick-Ray, Jerry. 2005. Historical oyster reef connections to Chesapeake Bay - a framework for consideration. Estuarine, Coastal and Shelf Science 64: 119–134. https://doi.org/10.1016/j.ecss.2005.02.011.

    Article  Google Scholar 

  • Meyer, Judy L. 1990. A blackwater perspective on riverine ecosystems. BioScience 40: 643–651. https://doi.org/10.2307/1311431.

    Article  Google Scholar 

  • Montanher, Otávio C., Evlyn M.L.M. Novo, Cláudio C.F. Barbosa, Camilo D. Rennó, and Thiago S.F. Silva. 2014. Empirical models for estimating the suspended sediment concentration in Amazonian white water rivers using Landsat 5/TM. International Journal of Applied Earth Observation and Geoinformation 29. Elsevier B.V.: 67–77. https://doi.org/10.1016/j.jag.2014.01.001.

    Article  Google Scholar 

  • NASA. 2014. Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Ocean Color Data.

    Google Scholar 

  • NASA (n.d.). Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Ocean Color Data. Greenbelt, MD, USA.

  • Nichol, Janet E. 1993a. Remote sensing of water quality in the Singapore-Johor-Riau growth triangle. Remote Sensing of Environment 43: 139–148. https://doi.org/10.1016/0034-4257(93)90003-G.

    Article  Google Scholar 

  • Nichol, Janet E. 1993b. Remote sensing of tropical blackwater rivers: a method for environmental water quality analysis. Applied Geography 13: 153–168. https://doi.org/10.1016/0143-6228(93)90056-7.

    Article  Google Scholar 

  • NOAA Fisheries Eastern Oyster Biological Review Team. 2007. Status Review of the Eastern Oyster (Crassostrea virginica). Northeast Regional Office: Report to the National Marine Fisheries Service.

    Google Scholar 

  • Paavel, Birgot, Helgi Arst, Liisa Metsamaa, Kaire Toming, and Anu Reinart. 2011. Optical investigations of CDOM-rich coastal waters in Pärnu Bay. Estonian Journal of Earth Sciences 60: 102–112. https://doi.org/10.3176/earth.2011.2.04.

    Article  Google Scholar 

  • Pahlevan, N., S. Sarkar, B.A. Franz, S.V. Balasubramanian, and J. He. 2017a. Sentinel-2 MultiSpectral Instrument (MSI) data processing for aquatic science applications: demonstrations and validations. Remote Sensing of Environment 201: 47–56. https://doi.org/10.1016/j.rse.2017.08.033.

    Article  Google Scholar 

  • Pahlevan, Nima, John R. Schott, Bryan A. Franz, Giuseppe Zibordi, Brian Markham, Sean Bailey, Crystal B. Schaaf, Michael Ondrusek, Steven Greb, and Christopher M. Strait. 2017b. Landsat 8 remote sensing reflectance (Rrs) products: evaluations, intercomparisons, and enhancements. Remote Sensing of Environment 190: 289–301.

    Article  Google Scholar 

  • Petes, Laura E., Alicia J. Brown, and Carley R. Knight. 2012. Impacts of upstream drought and water withdrawals on the health and survival of downstream estuarine oyster populations. Ecology and Evolution 2: 1712–1724. https://doi.org/10.1002/ece3.291.

    Article  Google Scholar 

  • Rietkerk, Max, and Johan van de Koppel. 2008. Regular pattern formation in real ecosystems. Trends in Ecology & Evolution 23: 169–175. https://doi.org/10.1016/j.tree.2007.10.013.

    Article  Google Scholar 

  • Robinson, I.S. 1983. Satellite observations of ocean colour. Phil. Trans. R. Soc. Lond. A 309: 415–432.

    Article  Google Scholar 

  • Rudorff, Natalia, Conrado M. Rudorff, Milton Kampel, and Gustavo Ortiz. 2018. Remote sensing monitoring of the impact of a major mining wastewater disaster on the turbidity of the Doce River plume off the eastern Brazilian coast. ISPRS Journal of Photogrammetry and Remote Sensing 145. International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS): 349–361. doi:https://doi.org/10.1016/j.isprsjprs.2018.02.013.

  • Rybovich, Molly, Megan K. La Peyre, Steven G. Hall, and Jerome F. La Peyre. 2016. Increased temperatures combined with lowered salinities differentially impact oyster size class growth and mortality. Journal of Shellfish Research 35: 101–113. https://doi.org/10.2983/035.035.0112.

    Article  Google Scholar 

  • Scyphers, Steven B., Sean P. Powers, Kenneth L. Heck, and Dorothy Byron. 2011. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries. PLoS One 6. https://doi.org/10.1371/journal.pone.0022396.

  • Seavey, J.R., W.E. Pine, P. Frederick, L. Sturmer, and M. Berrigan. 2011. Decadal changes in oyster reefs in the Big Bend of Florida’s Gulf Coast. Ecosphere 2: 114. https://doi.org/10.1890/ES11-00205.1.

    Article  Google Scholar 

  • Tehrani, Chaichi, Eurico J. D’Sa Nazanin, Christopher L. Osburn, Thomas S. Bianchi, and Blake A. Schaeffer. 2013. Chromophoric dissolved organic matter and dissolved organic carbon from sea-viewing wide field-of-view sensor (SeaWiFS), Moderatore Resolution Imaging Spectroradiometer (MODIS) and MERIS sensors: case study for the northern Gulf of Mexico. Remote Sensing 5: 1439–1464. https://doi.org/10.3390/rs5031439.

    Article  Google Scholar 

  • van de Koppel, Johan, Max Rietkerk, Norbert Dankers, and Peter M.J. Herman. 2005. Scale-dependent feedback and regular spatial patterns in young mussel beds. The American Naturalist 165: 66–77. https://doi.org/10.1086/428362.

    Article  Google Scholar 

  • van de Koppel, Johan, Tjeerd J. Bouma, and Peter M.J. Herman. 2012. The influence of local-and landscape-scale processes on spatial self-organization in estuarine ecosystems. Journal of Experimental Biology 215: 962–967. https://doi.org/10.1242/jeb.060467.

    Article  Google Scholar 

  • Vanhellemont, Quinten, and Kevin Ruddick. 2014. Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sensing of Environment 145. The Authors: 105–115. https://doi.org/10.1016/j.rse.2014.01.009.

    Article  Google Scholar 

  • Vanhellemont, Quinten, and Kevin Ruddick. 2016. Acolite for Sentinel-2: aquatic applications of MSI imagery. European Space Agency, (Special Publication) ESA SP SP-740: 9–13.

  • Vasilkov, A.P., V.I. Burenkov, and K.G. Ruddick. 1999. The spectral reflectance and transparency of river plume waters. International Journal of Remote Sensing 20: 2497–2508. https://doi.org/10.1080/014311699211895.

    Article  Google Scholar 

  • Walles, Brenda, João Salvador de Paiva, Bram C. van Prooijen, Tom Ysebaert, and Aad C. Smaal. 2015. The ecosystem engineer Crassostrea gigas affects tidal flat morphology beyond the boundary of their reef structures. Estuaries and Coasts 38: 941–950. https://doi.org/10.1007/s12237-014-9860-z.

    Article  Google Scholar 

  • Warren, M.A., S.G.H. Simis, V. Martinez-Vicente, K. Poser, M. Bresciani, K. Alikas, E. Spyrakos, C. Giardino, and A. Ansper. 2019. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sensing of Environment 225. Elsevier: 267–289. https://doi.org/10.1016/j.rse.2019.03.018.

    Article  Google Scholar 

  • Wei, Jianwei, Zhongping Lee, Rodrigo Garcia, Laura Zoffoli, Roy A. Armstrong, Zhehai Shang, Patrick Sheldon, and Robert F. Chen. 2018. An assessment of Landsat-8 atmospheric correction schemes and remote sensing reflectance products in coral reefs and coastal turbid waters. Remote Sensing of Environment 215: 18–32. https://doi.org/10.1016/j.rse.2018.05.033.

    Article  Google Scholar 

  • Wulder, Michael A., Thomas R. Loveland, David P. Roy, Christopher J. Crawford, Jeffrey G. Masek, Curtis E. Woodcock, and Richard G. Allen, et al. 2019. Current status of Landsat program, science, and applications. Remote Sensing of Environment 225: 127–147. https://doi.org/10.1016/j.rse.2019.02.015.

    Article  Google Scholar 

  • Ysebaert, Tom, Miron Hart, and Peter M.J. Herman. 2009. Impacts of bottom and suspended cultures of mussels Mytilus spp. on the surrounding sedimentary environment and macrobenthic biodiversity. Helgoland Marine Research 63: 59–74. https://doi.org/10.1007/s10152-008-0136-5.

    Article  Google Scholar 

  • Zhang, Minwei, Qing Dong, Tingwei Cui, Cunjin Xue, and Songli Zhang. 2014. Suspended sediment monitoring and assessment for Yellow River estuary from Landsat TM and ETM+ imagery. Remote Sensing of Environment 146. Elsevier Inc.: 136–147. https://doi.org/10.1016/j.rse.2013.09.033.

    Article  Google Scholar 

  • Zhao, Jun, Brian Barnes, Nelson Melo, David English, Brian Lapointe, Frank Muller-Karger, Blake Schaeffer, and Hu. Chuanmin. 2013. Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters. Remote Sensing of Environment 131. Elsevier Inc.: 38–50. https://doi.org/10.1016/j.rse.2012.12.009.

    Article  Google Scholar 

Download references

Funding

This work is supported by the USDA National Institute of Food and Agriculture, Hatch project 1016068, and North Carolina State University. SY is supported by the U.S. Geological Survey, U.S. Fish and Wildlife Service, and the University of Florida Department of Wildlife Ecology and Conservation. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie G. Nelson.

Additional information

Communicated by Richard C. Zimmerman

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alonso, A., Nelson, N.G., Yurek, S. et al. Estimating the Influence of Oyster Reef Chains on Freshwater Detention at the Estuary Scale Using Landsat-8 Imagery. Estuaries and Coasts 45, 1–16 (2022). https://doi.org/10.1007/s12237-021-00959-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-021-00959-6

Keywords

  • Landsat 8
  • Satellite imagery
  • Salinity
  • Oyster reefs
  • Suwannee River
  • Gulf of Mexico