Skip to main content

Advertisement

Log in

A Comprehensive Assessment of Sediment Dynamics in the Barataria Basin (LA, USA) Distinguishes Riverine Advection from Wave Resuspension and Identifies the Gulf Intracoastal Waterway as a Major Sediment Source

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Barataria (LA, USA) is an interdistributary deltaic basin that has experienced extensive marsh loss. The fate of these marshes is strongly controlled by the concentration of total suspended sediments (TSS) in the adjacent open bay water. This parameter, however, is poorly constrained, thus limiting the ability to predict the future marsh evolution. Here we investigate the open bay water sediment dynamics using three complementary approaches: monthly field surveys at 37 locations along the bay axis over 22 years, remote sensing over 20 years, and turbidity time series at 5 locations over 4 years. Monthly field sampling and remote sensing reveal that the TSS is highly seasonal and spatially variable. In particular, the sediment delivered through the Gulf Intracoastal Waterway (GIWW) during the flood season (January–April) dominates the TSS signal in mid-Barataria. This sediment originates mainly from the Atchafalaya River and is advected for more than 100 km before reaching Barataria. Because of a hysteresis in sediment transport, the TSS in the river water, and hence in the GIWW, is not uniquely related to the river discharge. As such, late flood season discharges do not contribute much sediment to Barataria. We estimate that the GIWW delivers on average 0.21 Tg of sediment per year to mid-Barataria. A different sediment input is instead present in lower Barataria, where river-borne sediment exiting the “birdfoot” of the Mississippi Delta is advected by easterly winds, especially during spring. At all five stations within Barataria, turbidity time series reveal that the daily sediment dynamics is mainly associated with local wind wave resuspension. River inputs and wave resuspension contribute nearly equally to the yearly averaged TSS, of about 80 mg/l on average. The GIWW, built in the 1920s, is an important but overlooked source of sediments for Barataria that can serve as a present-day analogue for the proposed Mississippi River sediment diversions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The MODIS data can be accessed at code.earthengine.google.com. USGS data can be accessed at waterdata.usgs.gov. The Turner dataset can be accessed at data.gulfresearchinitiative.orgdata/R4.x264.000:0018.

References

  • Carlin, J.A., G. Lee, T.M. Dellapenna, and P. Laverty. 2016. Sediment resuspension by wind, waves, and currents during meteorological frontal passages in a micro-tidal lagoon. Estuarine, Coastal and Shelf Science 172: 24–33. https://doi.org/10.1016/j.ecss.2016.01.029.

    Article  Google Scholar 

  • Cavatorta, J.R., M. Johnston, C. Hopkinson, and V. Valentine. 2003. Patterns of sedimentation in a salt marsh-dominated estuary. The Biological Bulletin 205 (2): 239–241.

    Article  Google Scholar 

  • Coleman, D.J., N.K. Ganju, and M.L. Kirwan. 2020. Sediment delivery to a tidal marsh platform is minimized by source decoupling and flux convergence. Journal of Geophysical Research. Earth Surface 125: e2020JF005558. https://doi.org/10.1029/2020JF005558.

    Article  Google Scholar 

  • Couvillion, B.R. 2018. Land area in coastal Louisiana (1932 to 2016) - land area spatial data - multi-date composites for specific years: U.S. Geological Survey data release. https://doi.org/10.5066/P99LJJZZ.

  • CPRA. 2017. Louisiana’s comprehensive master plan for a sustainable coast. Baton Rouge: CPRA Draft Plan Release.

    Google Scholar 

  • Das, A., D. Justić, M. Inoue, A. Hoda, H. Huang, and D. Park. 2012. Impacts of Mississippi River diversions on salinity gradients in a deltaic Louisiana estuary: Ecological and management implications. Estuarine, Coastal and Shelf Science 111: 17–26. https://doi.org/10.1016/j.ecss.2012.06.005.

    Article  CAS  Google Scholar 

  • Day, J.W., B. Li, B.D. Marx, D. Zhao, and R.R. Lane. 2020. Multivariate analyses of water quality dynamics over four decades in the Barataria Basin, Mississippi Delta. Water 12 (11): 3143. https://doi.org/10.3390/w12113143.

    Article  Google Scholar 

  • Deegan, L.A., D.S. Johnson, R.S. Warren, B.J. Peterson, J.W. Fleeger, S. Fagherazzi, and W.M. Wollheim. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490 (7420): 388–392. https://doi.org/10.1038/nature11533.

    Article  CAS  Google Scholar 

  • Eleveld, M.A., D. van der Wal, and T. van Kessel. 2014. Estuarine suspended particulate matter concentrations from sun-synchronous satellite remote sensing: Tidal and meteorological effects and biases. Remote Sensing of Environment 143: 204–215. https://doi.org/10.1016/j.rse.2013.12.019.

    Article  Google Scholar 

  • Elsey-Quirk, T., S.A. Graham, I.A. Mendelssohn, G. Snedden, J.W. Day, R.R. Twilley, G. Shaffer, L.A. Sharp, J. Pahl, and R.R. Lane. 2019. Mississippi river sediment diversions and coastal wetland sustainability: Synthesis of responses to freshwater, sediment, and nutrient inputs. Estuarine, Coastal and Shelf Science 221: 170–183. https://doi.org/10.1016/j.ecss.2019.03.002.

    Article  CAS  Google Scholar 

  • FitzGerald, D.M., and Z. Hughes. 2019. Marsh processes and their response to climate change and sea-level rise. Annual Review of Earth and Planetary Sciences 47 (1): 481–517. https://doi.org/10.1146/annurev-earth-082517-010255.

    Article  CAS  Google Scholar 

  • Gagliano, S.M., and J.L. Van Beek. 1975. An approach to multiuse management in the Mississippi Delta system, 223–238. Houston Geological Society.

  • Ganju, N.K., and D.H. Schoellhamer. 2006. Annual sediment flux estimates in a tidal strait using surrogate measurements. Estuarine, Coastal and Shelf Science 69 (1-2): 165–178. https://doi.org/10.1016/j.ecss.2006.04.008.

    Article  Google Scholar 

  • Ganju, N.K., M.L. Kirwan, P.J. Dickhudt, G.R. Guntenspergen, D.R. Cahoon, and K.D. Kroeger. 2015. Sediment transport-based metrics of wetland stability. Geophysical Research Letters 42: 2015GL065980. https://doi.org/10.1002/2015GL065980.

    Article  Google Scholar 

  • Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202. Big Remotely Sensed Data: Tools, Applications and Experiences: 18–27. https://doi.org/10.1016/j.rse.2017.06.031.

    Article  Google Scholar 

  • Grant, W.D., and O.S. Madsen. 1986. The continental-shelf bottom boundary layer. Annual Review of Fluid Mechanics 18 (1): 265–305. https://doi.org/10.1146/annurev.fl.18.010186.001405.

    Article  Google Scholar 

  • Green, M.O., and G. Coco. 2014. Review of wave-driven sediment resuspension and transport in estuaries. Reviews of Geophysics 52 (1): 77–117.

    Article  Google Scholar 

  • Ha, H.K., and K. Park. 2012. High-resolution comparison of sediment dynamics under different forcing conditions in the bottom boundary layer of a shallow, micro-tidal estuary. Journal of Geophysical Research. Oceans 117 (C6). https://doi.org/10.1029/2012JC007878.

  • Iles, R.L., N.D. Walker, J.R. White, and R.V. Rohli. 2020. Impacts of a major Mississippi River freshwater diversion on suspended sediment plume kinematics in Lake Pontchartrain, a semi-enclosed Gulf of Mexico Estuary. Estuaries and Coasts 44 (3): 704–721. https://doi.org/10.1007/s12237-020-00789-y.

    Article  Google Scholar 

  • Inoue, M., D. Park, D. Justić, and W.J. Wiseman. 2008. A high-resolution integrated hydrology–Hydrodynamic model of the Barataria Basin system. Environmental Modelling & Software 23 (9): 1122–1132. https://doi.org/10.1016/j.envsoft.2008.02.011.

    Article  Google Scholar 

  • Jankowski, K.L., T.E. Törnqvist, and A.M. Fernandes. 2017. Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nature Communications 8 (1): 14792. https://doi.org/10.1038/ncomms14792.

    Article  CAS  Google Scholar 

  • Jones, R., R. Fisher, C. Stark, and P. Ridd. 2015. Temporal patterns in seawater quality from dredging in tropical environments. PLoS ONE 10 (10): e0137112. https://doi.org/10.1371/journal.pone.0137112.

    Article  CAS  Google Scholar 

  • Justić, D., R.E. Turner, and N.N. Rabalais. 2003. Climatic influences on riverine nitrate flux: Implications for coastal marine eutrophication and hypoxia. Estuaries 26: 1–11. https://doi.org/10.1007/BF02691688.

  • Keogh, M.E., A.S. Kolker, G.A. Snedden, and A.A. Renfro. 2019. Hydrodynamic controls on sediment retention in an emerging diversion-fed delta. Geomorphology 332: 100–111. https://doi.org/10.1016/j.geomorph.2019.02.008.

    Article  Google Scholar 

  • Kesel, R.H. 1988. The decline in the suspended load of the lower Mississippi River and its influence on adjacent wetlands. Environmental Geology and Water Sciences 11 (3): 271–281. https://doi.org/10.1007/BF02574816.

    Article  Google Scholar 

  • Kim, W., D. Mohrig, R. Twilley, C. Paola, and G. Parker. 2009. Is it feasible to build new land in the Mississippi River Delta. Eos 90 (42): 373–374.

    Article  Google Scholar 

  • Kirwan, M.L., G.R. Guntenspergen, A. D’Alpaos, J.T. Morris, S.M. Mudd, and S. Temmerman. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters 37 (23). https://doi.org/10.1029/2010GL045489.

  • Li, G., K. Xu, Z. Xue, H. Liu, and S.J. Bentley. 2020. Hydrodynamics and sediment dynamics in Barataria Bay, Louisiana, USA. Estuarine, Coastal and Shelf Science 107090: 107090. https://doi.org/10.1016/j.ecss.2020.107090.

    Article  Google Scholar 

  • Mariotti, G. 2020. Beyond marsh drowning: The many faces of marsh loss (and gain). Advances in Water Resources 144: 103710.

    Article  Google Scholar 

  • Mariotti, G., H. Huang, Z. Xue, B. Li, D. Justić, and Z. Zang. 2018. Biased wind measurements in estuarine waters. Journal of Geophysical Research. Oceans 123 (5): 3577–3587. https://doi.org/10.1029/2017JC013748.

    Article  Google Scholar 

  • Mariotti, G., T. Elsey-Quirk, G. Bruno, and K. Valentine. 2020. Mud-associated organic matter and its direct and indirect role in marsh organic matter accumulation and vertical accretion. Limnology and Oceanography 65 (11): 2627–2641.

    Article  CAS  Google Scholar 

  • Meselhe, E.A., K.M. Sadid, and M.A. Allison. 2016. Riverside morphological response to pulsed sediment diversions. Geomorphology 270: 184–202. https://doi.org/10.1016/j.geomorph.2016.07.023.

    Article  Google Scholar 

  • Miller, R.L., and B.A. McKee. 2004. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sensing of Environment 93 (1-2): 259–266. https://doi.org/10.1016/j.rse.2004.07.012.

    Article  Google Scholar 

  • Mossa, J. 1989. Hysteresis and nonlinearity of discharge-sediment relationships in the Atchafalaya and lower Mississippi Rivers. Vol. 184. Wallingford: IAHS Publication.

    Google Scholar 

  • Nittrouer, J.A., and E. Viparelli. 2014. Sand as a stable and sustainable resource for nourishing the Mississippi River delta. Nature Geoscience 7 (5): 350–354. https://doi.org/10.1038/ngeo2142.

    Article  CAS  Google Scholar 

  • Nowacki, D.J., and N.K. Ganju. 2020. Sediment dynamics of a divergent bay–marsh complex. Estuaries and Coasts. https://doi.org/10.1007/s12237-020-00855-5.

  • Ou, Y., Z. Xue, C. Li, K. Xu, J.R. White, S.J. Bentley, and Z. Zang. 2020. A numerical investigation of salinity variations in the Barataria Estuary, Louisiana in connection with the Mississippi River and restoration activities. Estuarine, Coastal and Shelf Science 245: 107021. https://doi.org/10.1016/j.ecss.2020.107021.

    Article  Google Scholar 

  • Payandeh, A.R., D. Justić, G. Mariotti, H. Huang, and S. Sorourian. 2019. Subtidal water level and current variability in a bar-built estuary during cold front season: Barataria Bay, Gulf of Mexico. Journal of Geophysical Research. Oceans 124 (10): 7226–7246. https://doi.org/10.1029/2019JC015081.

    Article  Google Scholar 

  • Payandeh, A.R., D. Justić, G. Mariotti, H. Huang, K. Valentine, and N.D. Walker. 2021. Suspended sediment dynamics in a deltaic estuary controlled by subtidal motion and offshore river plumes. Estuarine, Coastal and Shelf Science 250: 107137.

    Article  Google Scholar 

  • Pellerin, B.A., B.A. Bergamaschi, R.J. Gilliom, C.G. Crawford, J. Saraceno, C.P. Frederick, B.D. Downing, and J.C. Murphy. 2014. Mississippi river nitrate loads from high frequency sensor measurements and regression-based load estimation. Environmental Science & Technology 48 (21): 12612–12619. https://doi.org/10.1021/es504029c.

    Article  CAS  Google Scholar 

  • Perez, B.C., J.W. Day Jr., L.J. Rouse, R.F. Shaw, and M. Wang. 2000. Influence of Atchafalaya River discharge and winter frontal passage on suspended sediment concentration and flux in Fourleague Bay, Louisiana. Estuarine, Coastal and Shelf Science 50 (2): 271–290. https://doi.org/10.1006/ecss.1999.0564.

    Article  CAS  Google Scholar 

  • Peyronnin, N., M. Green, C.P. Richards, A. Owens, D. Reed, J. Chamberlain, D.G. Groves, W.K. Rhinehart, and K. Belhadjali. 2013. Louisiana’s 2012 coastal master plan: Overview of a science-based and publicly informed decision-making process. Journal of Coastal Research 67: 1–15. https://doi.org/10.2112/SI_67_1.1.

    Article  Google Scholar 

  • Rasmussen, P.P., J.R. Gray, G.D. Glysson, and A.C. Ziegler. 2009. Guidelines and procedures for computing time-series suspended-sediment concentrations and loads from in-stream turbidity-sensor and streamflow data U.S. Geological Survey Techniques and Methods, Book 3, Chap. C4, U.S. Department of the Interior and U.S. Geological Survey.

  • Reisinger, A., J.C. Gibeaut, and P.E. Tissot. 2017. Estuarine suspended sediment dynamics: observations derived from over a decade of satellite data. Frontiers in Marine Science 4. https://doi.org/10.3389/fmars.2017.00233.

  • Rivera-Monroy, V.H., P. Lenaker, R.R. Twilley, R.D. Delaune, C.W. Lindau, W. Nuttle, E. Habib, R.W. Fulweiler, and E. Castañeda-Moya. 2010. Denitrification in coastal Louisiana: A spatial assessment and research needs. Journal of Sea Research 63 (3-4): 157–172. https://doi.org/10.1016/j.seares.2009.12.004.

    Article  CAS  Google Scholar 

  • Schoellhamer, D.H. 1995. Sediment resuspension mechanisms in Old Tampa Bay, Florida. Estuarine, Coastal and Shelf Science 40 (6): 603–620. https://doi.org/10.1006/ecss.1995.0041.

    Article  Google Scholar 

  • Schuerch, M., T. Spencer, S. Temmerman, M.L. Kirwan, C. Wolff, D. Lincke, C.J. McOwen, M.D. Pickering, R. Reef, A.T. Vafeidis, J. Hinkel, R.J. Nicholls, and S. Brown. 2018. Future response of global coastal wetlands to sea-level rise. Nature 561 (7722): 231–234. https://doi.org/10.1038/s41586-018-0476-5.

    Article  CAS  Google Scholar 

  • Swart, D.H. 1974. Offshore sediment transport and equilibrium profiles. Delft Hydraulic Laboratory 131: 1–217.

    Google Scholar 

  • Swarzenski, C.M. 2003. Surface water hydrology of the GIWW in south-central Louisiana. USGS Professional Paper 1672.

  • Swarzenski, C.M., and S.M. Perrien. 2015. Discharge, suspended sediment, and salinity in the Gulf Intracoastal Waterway and adjacent surface waters in South-Central Louisiana, 1997–2008. USGS Scientific Investigations Report.

  • Swarzenski, C.M., T.W. Doyle, B. Fry, and T.G. Hargis. 2008. Biogeochemical response of organic-rich freshwater marshes in the Louisiana delta plain to chronic river water influx. Biogeochemistry 90 (1): 49–63. https://doi.org/10.1007/s10533-008-9230-7.

    Article  Google Scholar 

  • Turner, R.E. 2017. Water quality data from the Barataria Basin, 1994-2016. Distributed by: Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, Texas A&M University–Corpus Christi. https://doi.org/10.7266/N7736NZ9.

  • Turner, R.E., E.M. Swenson, C.S. Milan, and J.M. Lee. 2019. Spatial variations in chlorophyll a, C, N, and P in a Louisiana estuary from 1994 to 2016. Hydrobiologia 834 (1): 131–144. https://doi.org/10.1007/s10750-019-3918-7.

    Article  CAS  Google Scholar 

  • Turner, R.E., C. Swarzenski, and J.E. Bodker. 2020. Soil shear strength losses in two fresh marshes with variable increases in N and P Loading. Wetlands 40 (5): 1189–1199. https://doi.org/10.1007/s13157-020-01265-w.

    Article  Google Scholar 

  • Walker, N.D., W.J. Wiseman, L.J. Rouse Jr., and A. Babin. 2005. Effects of river discharge, wind stress, and slope eddies on circulation and the satellite-observed structure of the Mississippi River Plume. Journal of Coastal Research 21: 1228–1244.

    Article  Google Scholar 

  • Wang, F.C. 1997. Dynamics of intertidal marshes near shallow estuaries in Louisiana. Wetlands Ecology and Management 5 (2): 131–143. https://doi.org/10.1023/A:1008255609987.

    Article  Google Scholar 

  • Wang, L., and D. Justić. 2009. A modeling study of the physical processes affecting the development of seasonal hypoxia over the inner Louisiana-Texas shelf: circulation and stratification. Continental Shelf Research 29 (11-12): 1464–1476. https://doi.org/10.1016/j.csr.2009.03.014.

    Article  Google Scholar 

  • Wasson, K., N.K. Ganju, Z. Defne, C. Endris, T. Elsey-Quirk, K.M. Thorne, C.M. Freeman, G. Guntenspergen, D.J. Nowacki, and K.B. Raposa. 2019. Understanding tidal marsh trajectories: evaluation of multiple indicators of marsh persistence. Environmental Research Letters 14 (12): 124073. https://doi.org/10.1088/1748-9326/ab5a94.

    Article  Google Scholar 

  • White, J.R., F. Messina, L. Moss, and E. Meselhe. 2018. Salinity and marine mammal dynamics in Barataria Basin: Historic patterns and modeled diversion scenarios. Water 10 (8): 1015. https://doi.org/10.3390/w10081015.

    Article  Google Scholar 

  • White, J.R., R.D. DeLaune, D. Justić, J.W. Day, J. Pahl, R.R. Lane, W.R. Boynton, and R.R. Twilley. 2019. Consequences of Mississippi River diversions on nutrient dynamics of coastal wetland soils and estuarine sediments: a review. Estuarine, Coastal and Shelf Science 224: 209–216. https://doi.org/10.1016/j.ecss.2019.04.027.

    Article  CAS  Google Scholar 

  • Whitehouse, R., R. Soulsby, W. Roberts, and H. Mitchener. 2000. Dynamics of estuarine muds. Thomas Telford Publishing.

  • Wiberg, P.L., S. Fagherazzi, and M.L. Kirwan. 2020. Improving predictions of salt marsh evolution through better integration of data and models. Annual Review of Marine Science 12 (1): 389–413. https://doi.org/10.1146/annurev-marine-010419-010610.

    Article  Google Scholar 

  • Xu, K., S.J. Bentley, P. Robichaux, X. Sha, and H. Yang. 2016. Implications of texture and erodibility for sediment retention in receiving basins of coastal Louisiana diversions. Water 8 (1): 26. https://doi.org/10.3390/w8010026.

    Article  Google Scholar 

  • Xu, K., S.J. Bentley, J.W. Day, and A.M. Freeman. 2019. A review of sediment diversion in the Mississippi River deltaic plain. Estuarine, Coastal and Shelf Science 225: 106241. https://doi.org/10.1016/j.ecss.2019.05.023.

    Article  Google Scholar 

  • Young, I.R., and L.A. Verhagen. 1996. The growth of fetch limited waves in water of finite depth .1. Total energy and peak frequency. Coastal Engineering 29: 47–78.

    Article  Google Scholar 

  • Yu, K., R.D. DeLaune, and P. Boeckx. 2006. Direct measurement of denitrification activity in a Gulf coast freshwater marsh receiving diverted Mississippi River water. Chemosphere 65 (11): 2449–2455. https://doi.org/10.1016/j.chemosphere.2006.04.046.

    Article  CAS  Google Scholar 

  • Zavala-Hidalgo, J., R. Romero-Centeno, A. Mateos-Jasso, S.L. Morey, and B. Martínez-López. 2014. The response of the Gulf of Mexico to wind and heat flux forcing: What has been learned in recent years? Atmósfera 27.

  • Zhang, X., C.G. Fichot, C. Baracco, R. Guo, S. Neugebauer, Z. Bengtsson, N.K. Ganju, and S. Fagherazzi. 2020. Determining the drivers of suspended sediment dynamics in tidal marsh-influenced estuaries using high-resolution ocean color remote sensing. Remote Sensing of Environment 240: 111682. https://doi.org/10.1016/j.rse.2020.111682.

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Hendrix and C. Swarzenski for helpful discussions on the turbidity time series data and early versions of the manuscript. We thank D. Novacki for useful comments on an early version of the manuscript.

Funding

This study was partly funded by the Louisiana Coastal Protection and Restoration Authority - Coastal Science Assistantship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mariotti.

Additional information

Communicated by David K. Ralston

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariotti, G., Ceccherini, G., McDonell, M. et al. A Comprehensive Assessment of Sediment Dynamics in the Barataria Basin (LA, USA) Distinguishes Riverine Advection from Wave Resuspension and Identifies the Gulf Intracoastal Waterway as a Major Sediment Source. Estuaries and Coasts 45, 78–95 (2022). https://doi.org/10.1007/s12237-021-00957-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-021-00957-8

Keywords

Navigation