Trophic Biomarkers Indicate Coastal Surf Zone Hydrodynamics Affect Resource Assimilation by Mytilus californianus Mussels


Surf zone hydrodynamics influences the delivery of coastal phytoplankton and detritus food subsidies to shore. Variation in surf zone hydrodynamics can cause phytoplankton concentrations to be higher at dissipative than reflective surf zones, altering both the quantity and quality of food for intertidal suspension-feeders. To assess if surf zone-dependent food availability influences suspension-feeder diets, we out-planted Mytilus californianus mussels for a 5-month common garden experiment at sites with dissipative and reflective surf zones at Cape Arago, Oregon. Stable isotopes, gravimetric lipid weights, and fatty acid trophic biomarkers of extracted abductor muscles were used to examine possible diet differences between mussels grown at dissipative and reflective sites. Both δ15N‰ and δ13C‰ values varied significantly between dissipative and reflective surf zone types, but there was no difference in gravimetric lipid weight between surf zone types. The multivariate fatty acid composition of mussels from dissipative and reflective sites differed; mussels at dissipative sites had a higher proportion of fatty acids indicative of diatoms in their diet (e.g., 16:1ω7, 20:5ω3), whereas mussels at reflective sites had a higher proportion of fatty acids indicative of dinoflagellates (e.g., 22:6ω3). Aspects of our stable isotope and fatty acid data suggest trophic subsidies to mussels were influenced by surf zone hydrodynamics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Ackman, R. G., C. S. Tocher, and J. McLachlan. 1968. Marine phytoplankter fatty acids. Journal of the Fisheries Research Board of Canada 25. NRC Research Press Ottawa, Canada: 1603–1620.

  2. Alfaro, Andrea C., François Thomas, Luce Sergent, and Mark Duxbury. 2006. Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Estuarine, Coastal and Shelf Science 70. Academic Press: 271–286.

  3. Anderson, M.J., R.N. Gorley, and K.R. Clarke. 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. Plymouth, UK: PRIMER-E Ltd..

    Google Scholar 

  4. Bergamino, Leandro, Diego Lercari, and Omar Defeo. 2011. Food web structure of sandy beaches: temporal and spatial variation using stable isotope analysis. Estuarine, Coastal and Shelf Science 91. Academic Press: 536–543.

  5. Bergamino, Leandro, Ana Martínez, Eunah Han, Diego Lercari, and Omar Defeo. 2016. Trophic niche shifts driven by phytoplankton in sandy beach ecosystems. Estuarine, Coastal and Shelf Science 180: 33–40.

    CAS  Article  Google Scholar 

  6. Brenna, J. Thomas, Thomas N. Corso, Herbert J. Tobias, and Richard J. Caimi. 1997. High-precision continuous-flow isotope ratio mass spectrometry. Mass Spectrometry Reviews 16: 227–258.

  7. Budge, S.M, C.C Parrish, and C.H Mckenzie. 2001. Fatty acid composition of phytoplankton, settling particulate matter and sediments at a sheltered bivalve aquaculture site. Marine Chemistry 76. Elsevier: 285–303.

  8. Budge, S.M., M.J. Wooller, A.M. Springer, S.J. Iverson, C.P. McRoy, and G.J. Divoky. 2008. Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis. Oecologia 157 (1): 117–129.

    CAS  Article  Google Scholar 

  9. Bustamante, Rodrigo H., George M. Branch, Sean Eekhout, Bruce Robertson, Peter Zoutendyk, Michael Schleyer, Arthur Dye, et al. 1995. Gradients of intertidal primary productivity around the coast of South Africa and their relationships with consumer biomass. Oecologia 102. Springer-Verlag: 189–201.

  10. Castelle, Bruno, and Giovanni Coco. 2013. Surf zone flushing on embayed beaches. Geophysical Research Letters 40 (10): 2206–2210.

    Article  Google Scholar 

  11. Caut, Stéphane, Elena Angulo, and Franck Courchamp. 2009. Variation in discrimination factors (Δ 15 N and Δ 13 C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology 46. John Wiley & Sons, Ltd (10.1111): 443–453.

  12. Clarke, K.R., and R.N. Gorley. 2006. PRIMER v6: User Manual/Tutorial. 1st ed. Plymouth, UK: PRIMER-E Ltd..

    Google Scholar 

  13. Conser, Elena, and Alan L. Shanks. 2019. Density of benthic macroalgae in the intertidal zone varies with surf zone hydrodynamics. Phycologia. Taylor & Francis 58 (3): 1–6.

    CAS  Article  Google Scholar 

  14. Dalsgaard, Johanne, Michael St. John, Gerhard Kattner, Dörthe Müller-Navarra, and Wilhelm Hagen. 2003. Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology 46: 225–340.

    Article  Google Scholar 

  15. Defeo, O., and A. McLachlan. 2005. Patterns, processes and regulatory mechanisms in sandy beach macrofauna: a multi-scale analysis. Marine Ecology Progress Series 295: 1–20.

    Article  Google Scholar 

  16. Docmac, Felipe, Miguel Araya, Ivan A. Hinojosa, Cristina Dorador, and Chris Harrod. 2017. Habitat coupling writ large: pelagic-derived materials fuel benthivorous macroalgal reef fishes in an upwelling zone. Ecology 98. Ecological Society of America: 2267–2272.

  17. Fernández-Reiriz, M.J., J.L. Garrido, and J. Irisarri. 2015. Fatty acid composition in Mytilus galloprovincialis organs: trophic interactions, sexual differences and differential anatomical distribution. Marine Ecology Progress Series 528: 221–234.

    CAS  Article  Google Scholar 

  18. Galloway, Aaron W. E., and Suzanne M. Budge. 2020. The critical importance of experimentation in biomarker-based trophic ecology. Philosophical Transactions of the Royal Society B: Biological Sciences 375. NLM (Medline): 20190638.

  19. Galloway, Aaron W. E., and Monika Winder. 2015. Partitioning the relative importance of phylogeny and environmental conditions on phytoplankton fatty acids. Edited by Antonietta Quigg. PLOS ONE 10. Public Library of Science: e0130053.

  20. Galloway, Aaron W. E., Kevin H. Britton-Simmons, David O. Duggins, Paul W. Gabrielson, and Michael T. Brett. 2012. Fatty acid signatures differentiate marine macrophytes at ordinal and family ranks. Journal of Phycology 48. John Wiley & Sons, Ltd (10.1111): 956–965.

  21. Graeve, M., G. Kattner, and D. Piepenburg. 1997. Lipids in Arctic benthos: does the fatty acid and alcohol composition reflect feeding and trophic interactions? Polar Biology 18. Springer-Verlag 18 (1): 53–61.

    Article  Google Scholar 

  22. Handå, Aleksander, Hojune Min, Xinxin Wang, Ole Jacob Broch, Kjell Inge Reitan, Helge Reinertsen, and Yngvar Olsen. 2012. Incorporation of fish feed and growth of blue mussels (Mytilus edulis) in close proximity to salmon (Salmo salar) aquaculture: implications for integrated multi-trophic aquaculture in Norwegian coastal waters. Aquaculture 356–357. Elsevier: 328–341.

  23. Hebert, C.E., M.T. Arts, and D.V. Weseloh§. 2006. Ecological tracers can quantify food web structure and change. American Chemical Society. 40 (18): 5618–5623.

    CAS  Article  Google Scholar 

  24. Jaschinski, S., D.C. Brepohl, and U. Sommer. 2011. Seasonal variation in carbon sources of ­mesograzers and small predators in an eelgrass community: stable isotope and fatty acid analyses. Marine Ecology Progress Series 431: 69–82.

    Article  Google Scholar 

  25. Kainz, Martin, Michael T. Arts, and Asit Mazumder. 2004. Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnology and Oceanography 49. John Wiley & Sons, Ltd: 1784–1793.

  26. Kelly, J.R., and R.E. Scheibling. 2012. Fatty acids as dietary tracers in benthic food webs. Marine Ecology Progress Series 446: 1–22.

    CAS  Article  Google Scholar 

  27. Lowe, Alexander T., Aaron W. E. Galloway, J. Sean Yeung, Megan N. Dethier, and David O. Duggins. 2014. Broad sampling and diverse biomarkers allow characterization of nearshore particulate organic matter. Oikos 123. WILEY-BLACKWELL, 111 RIVER ST, HOBOKEN 07030-5774, NJ USA: 1341–1354.

  28. MacMahan, Jamie, Jeff Brown, Jenna Brown, Ed Thornton, Ad Reniers, Tim Stanton, Martijn Henriquez, Edith Gallagher, Jon Morrison, Martin J. Austin, Tim M. Scott, and Nadia Senechal. 2010. Mean Lagrangian flow behavior on an open coast rip-channeled beach: A new perspective. Marine Geology 268 (1-4): 1–15.

    Article  Google Scholar 

  29. Marshall, Robert, Scott McKinley, and Christopher M. Pearce. 2010. Effects of nutrition on larval growth and survival in bivalves. Reviews in Aquaculture 2. John Wiley & Sons, Ltd (10.1111): 33–55.

  30. Menge, B.A., J. Lubchenco, M.E.S. Bracken, F. Chan, M.M. Foley, T.L. Freidenburg, S.D. Gaines, G. Hudson, C. Krenz, H. Leslie, D.N.L. Menge, R. Russell, and M.S. Webster. 2003. Coastal oceanography sets the pace of rocky intertidal community dynamics. Proceedings of the National Academy of Sciences of the United States of America 100 (21): 12229–12234.

    CAS  Article  Google Scholar 

  31. Morgan, Steven G., Alan L. Shanks, Atsushi G. Fujimura, Ad. JAd. H. M. Reniers, Jamie MacMahan, Chris D. Griesemer, Marley Jarvis, and Jenna Brown. 2016. Surfzone hydrodynamics as a key determinant of spatial variation in rocky intertidal communities. Proceedings of the Royal Society of London B: Biological Sciences 283.

  32. Morgan, Steven G., Alan L. Shanks, Jamie MacMahan, Ad J.H.M. Reniers, Chris D. Griesemer, Marley Jarvis, and Atsushi G. Fujimura. 2017. Surf zones regulate larval supply and zooplankton subsidies to nearshore communities. Limnology and Oceanography. 62 (6): 2811–2828.

    Article  Google Scholar 

  33. Parrish, Christopher C. 2013. Lipids in Marine Ecosystems. ISRN Oceanography 2013. Hindawi Publishing Corporation: 1–16.

  34. Peterson, B J, and B Fry. 1987. Stable Isotopes in Ecosystem Studies. Annual Review of Ecology and Systematics 18. Annual Reviews 4139 El Camino Way, P.O. Box 10139, Palo Alto, CA 94303-0139, USA: 293–320.

  35. Pettersen, Amanda K., Giovanni M. Turchini, Samad Jahangard, Brett A. Ingram, and Craig D.H. Sherman. 2010. Effects of different dietary microalgae on survival, growth, settlement and fatty acid composition of blue mussel (Mytilus galloprovincialis) larvae. Aquaculture 309. Elsevier: 115–124.

  36. Reniers, A. J. H. M., J. H. MacMahan, F. J. Beron-Vera, and M. J. Olascoaga. 2010. Rip-current pulses tied to Lagrangian coherent structures. Geophysical Research Letters 37: n/a-n/a.

  37. Rouillon, G, and E Navarro. 2003. Differential utilization of species of phytoplankton by the mussel Mytilus edulis. Acta Oecologica 24. Elsevier Masson: S299–S305.

  38. Salant, Carlissa D., and Alan L. Shanks. 2018. Surf-zone hydrodynamics alter phytoplankton subsidies affecting reproductive output and growth of tidal filter feeders. Ecology 99 (8): 1878–1889.

    Article  Google Scholar 

  39. Schram, Julie B., Julia N. Kobelt, Megan N. Dethier, and Aaron W. E. Galloway. 2018. Trophic transfer of macroalgal fatty acids in two urchin species: digestion, egestion, and tissue building. Frontiers in Ecology and Evolution 6. Frontiers: 83.

  40. Shanks, Alan L., and Steven G. Morgan. 2019. Testing the intermittent upwelling hypothesis: reply. Ecology 100. John Wiley & Sons, Ltd: e02516.

  41. Shanks, Alan L., Steven G. Morgan, Jamie MacMahan, and A. Reniers. 2010. Surf zone physical and morphological regime as determinants of temporal and spatial variation in larval recruitment. Journal of Experimental Marine Biology and Ecology 392 (1-2): 140–150.

    Article  Google Scholar 

  42. Shanks, Alan L., Steven G. Morgan, Jamie MacMahan, and Ad.J.H.M. Reniers. 2017a. Alongshore variation in barnacle populations is determined by surf zone hydrodynamics. Ecological Monographs 87 (3): 508–532.

    Article  Google Scholar 

  43. Shanks, Alan L., Steven G. Morgan, Jamie MacMahan, Ad.J.H.M. Reniers, Marley Jarvis, Jenna Brown, Atsushi Fujimura, Lisa Ziccarelli, and Chris Griesemer. 2017b. Persistent differences in horizontal gradients in phytoplankton concentration maintained by surf zone hydrodynamics. Estuaries and Coasts. Springer US: 1–19.

  44. Shanks, Alan L., Peter Sheesley, and Leyia Johnson. 2017c. Phytoplankton subsidies to the inter-tidal zone are strongly affected by surf-zone hydrodynamics. Marine Ecology 38 (3): e12441.

    Article  Google Scholar 

  45. Talbot, M.M.B., and G.C. Bate. 1987. the spatial dynamics of surf diatom patches in a medium energy, cuspate beach. Botanica Marina 30 (6): 459–466.

    Article  Google Scholar 

  46. Woodroffe, C. D. 2002. Coasts : form, process, and evolution. Cambridge University Press.

  47. Wright, L.D., and A.D. Short. 1984. Morphodynamic variability of surf zones and beaches: a synthesis. Marine Geology 56 (1-4): 93–118.

    Article  Google Scholar 

Download references


This research would not have been possible without the support of the Coastal Trophic Ecology Lab, and its associates. We thank S. Taipale for assistance with training in FA extraction and GCMS analysis to CS. Funding was also provided by the Lerner-Gray Fund for Marine Research and the Oregon Society of Conchology. We would like to thank the numerous field and lab helpers who contributed to this research and a special thanks to the Washington State University Stable Isotope Core Laboratory for their analyses.


This research was supported by NSF-Biological Oceanography OCE-1259603 and NSF-Biological Oceanography OCE-092735 to R. Emlet, A. Shanks and D. Sutherland, and by the startup award to A. Galloway by the University of Oregon.

Author information



Corresponding author

Correspondence to Carlissa D. Salant.

Additional information

Communicated by Hongbin Liu

Supplementary Information


(DOCX 388 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salant, C.D., Shanks, A.L., Schram, J.B. et al. Trophic Biomarkers Indicate Coastal Surf Zone Hydrodynamics Affect Resource Assimilation by Mytilus californianus Mussels. Estuaries and Coasts (2021).

Download citation


  • Dissipative
  • Reflective
  • Fatty acids
  • Stable isotopes
  • Eicosapentaenoic acid
  • Docosahexaenoic acid