Skip to main content

Advertisement

Log in

Terrestrial Organic Matter Inputs to Nearshore Marine Sediment Under Prolonged Drought Followed by Significant Rainfall as Indicated by Lignin

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Terrestrial organic matter (TOM) exported to nearshore marine regions may be altered by drought or large amounts of precipitation. We examined how significant precipitation in southern California during the winter seasons of 2015 and 2016, following a prolonged drought from 2011 to 2015, impacted the quantity and quality of TOM transported to nearshore kelp forests of the Santa Barbara Channel. Based on organic matter content, lignin oxidation by-products, and carbon isotopic signatures, biomarkers of TOM were detected in stream, estuarine, and marine sediments. Quantitative measures of lignin differentiated between the three environments. Qualitative lignin signatures revealed temporal patterns that appeared in stream, estuarine, and marine sediment. These patterns indicated that TOM delivered into nearshore coastal regions from mountain watersheds was less degraded over time and its source material changed through time. Our findings suggest lignin oxidation compounds can be used as biomarkers of TOM transported during storm events from coastal watersheds into nearshore marine sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilera, R., and J.M. Melack. 2018a. Concentration-discharge responses to storm events in coastal California watersheds: C-Q Storm responses coastal California. Water Resources Research 54 (1): 407–424. https://doi.org/10.1002/2017WR021578.

    Article  Google Scholar 

  • Aguilera, R., and J.M. Melack. 2018b. Relationships among nutrient and sediment fluxes, hydrological variability, fire, and land cover in coastal California catchments. Journal of Geophysical Research: Biogeosciences 123 (8): 2568–2589. https://doi.org/10.1029/2017JG004119.

    Article  Google Scholar 

  • Airoldi, L., M. Fabiano, and F. Cinelli. 1996. Sediment deposition and movement over a turf assemblage in a shallow rocky coastal area of the Ligurian Sea. Marine Ecology Progress Series 133: 241–251.

    Article  Google Scholar 

  • Battalio, B., Behrens, D., Couch, R., Divita, E., Hubbard, D., Lowe, J., Revell, D., Saley, P., 2015. Goleta slough area sea level rise and management plan. Environmental Science Associates.

  • Bélanger, E., M. Lucotte, B. Gregoire, M. Moingt, S. Paquet, R. Davidson, F. Mertens, C.J.S. Passos, and C. Romana. 2015. Lignin signatures of vegetation and soils in tropical environments. Advances in Environmental Research 4: 247–262. https://doi.org/10.12989/aer.2015.4.4.247.

    Article  Google Scholar 

  • Bélanger, É., M. Lucotte, M. Moingt, S. Paquet, J. Oestreicher, and C. Rozon. 2017. Altered nature of terrestrial organic matter transferred to aquatic systems following deforestation in the Amazon. Applied Geochemistry 87: 136–145. https://doi.org/10.1016/j.apgeochem.2017.10.016.

    Article  CAS  Google Scholar 

  • Benner, R., M.L. Fogel, E.K. Sprague, and R.E. Hodson. 1987. Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329 (6141): 708–710.

    Article  CAS  Google Scholar 

  • Billen, G.C., C. Lancelot, and M. Meybeck. 1991. N, P, and Si retention along the aquatic continuum from land to ocean. In Ocean Margin Processes in Global Change, ed. R.F.C. Mantoura, J.-M. Martin, and R. Wollast, 19–44. Hoboken: Wiley.

    Google Scholar 

  • Blair, N.E., and R.C. Aller. 2012. The fate of terrestrial organic carbon in the marine environment. Annual Review of Marine Science 4 (1): 401–423. https://doi.org/10.1146/annurev-marine-120709-142717.

    Article  Google Scholar 

  • Brzezinski, M., D. Reed, S. Harrer, A. Rassweiler, J. Melack, B. Goodridge, and J. Dugan. 2013. Multiple sources and forms of nitrogen sustain year-round kelp growth on the inner continental shelf of the Santa Barbara Channel. Oceanography 26 (3): 114–123. https://doi.org/10.5670/oceanog.2013.53.

    Article  Google Scholar 

  • Burdige, D.J. 2005. Burial of terrestrial organic matter in marine sediments: A re-assessment. Global Biogeochemical Cycles 19 (4): GB4011. https://doi.org/10.1029/2004GB002368.

    Article  CAS  Google Scholar 

  • Chaves, L.F. 2010. An entomologist guide to demystify pseudoreplication: Data analysis of field studies with design constraints. Journal of Medical Entomology 47 (3): 291–298. https://doi.org/10.1093/jmedent/47.1.291.

    Article  Google Scholar 

  • Chen, S., and R. Torres. 2018. Biogeochemical characteristics and fluxes of suspended particulate organic matter in response to low-tide rainfall: Rainfall-driven POM fluxes and characteristics. Limnology and Oceanography 63 (S1): S307–S323. https://doi.org/10.1002/lno.10741.

    Article  CAS  Google Scholar 

  • Coombs, J.S., and J.M. Melack. 2013. Initial impacts of a wildfire on hydrology and suspended sediment and nutrient export in California chaparral watersheds: Wildfire Impacts On Hydrology And Export. Hydrological Processes 27 (26): 3842–3851. https://doi.org/10.1002/hyp.9508.

    Article  Google Scholar 

  • Cotner, J.B., T.H. Johengen, and B.A. Biddanda. 2000. Intense winter heterotrophic production stimulated by benthic resuspension. Limnology and Oceanography 45 (7): 1672–1676.

    Article  Google Scholar 

  • Dalzell, B.J., T.R. Filley, and J.M. Harbor. 2007. The role of hydrology in annual organic carbon loads and terrestrial organic matter export from a midwestern agricultural watershed. Geochimica et Cosmochimica Acta 71 (6): 1448–1462. https://doi.org/10.1016/j.gca.2006.12.009.

    Article  CAS  Google Scholar 

  • Dittmar, T., and R.J. Lara. 2001. Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazônia, Brazil). Geochimica et Cosmochimica Acta 65 (9): 1417–1428.

    Article  CAS  Google Scholar 

  • Eckes, D., 2020. Impacts on the flocculation of dissolved organic carbon and lignin with increasing salinity. University of California, Davis. ProQuest Dissertations Publishing 27741984. https://search.proquest.com/docview/2436433439?accountid=14522

  • Feng, D., E. Beighley, R. Raoufi, J. Melack, Y. Zhao, S. Iacobellis, and D. Cayan. 2019. Propagation of future climate conditions into hydrologic response from coastal southern California watersheds. Climatic Change. 153 (1-2): 199–218. https://doi.org/10.1007/s10584-019-02371-3.

    Article  Google Scholar 

  • Fewings, M.R., L. Washburn, and J.C. Ohlmann. 2015. Coastal water circulation patterns around the Northern Channel Islands and Point Conception, California. Progress in Oceanography 138: 283–304. https://doi.org/10.1016/j.pocean.2015.10.001.

    Article  Google Scholar 

  • Fong, C.R., and P. Fong. 2018. Nutrient fluctuations in marine systems: Press versus pulse nutrient subsidies affect producer competition and diversity in estuaries and coral reefs. Estuaries and Coasts 41 (2): 421–429. https://doi.org/10.1007/s12237-017-0291-5.

    Article  CAS  Google Scholar 

  • Godin, P., R.W. Macdonald, Z.Z.A. Kuzyk, M.A. Goñi, and G.A. Stern. 2017. Organic matter compositions of rivers draining into Hudson Bay: Present-day trends and potential as recorders of future climate change: Lignins in Hudson Bay Rivers. Journal of Geophysical Research: Biogeosciences 122 (7): 1848–1869. https://doi.org/10.1002/2016JG003569.

    Article  CAS  Google Scholar 

  • Goñi, M.A., and J.I. Hedges. 1995. Sources and reactivities of marine-derived organic matter in coastal sediments as determined by alkaline CuO oxidation. Geochimica et Cosmochimica Acta 59 (14): 2965–2981.

    Article  Google Scholar 

  • Goñi, M.A., and S. Montgomery. 2000. Alkaline CuO oxidation with a microwave digestion system: Lignin analyses of geochemical samples. Analytical Chemistry 72 (14): 3116–3121. https://doi.org/10.1021/ac991316w.

    Article  CAS  Google Scholar 

  • Goñi, M.A., K.C. Ruttenberg, and T.I. Eglinton. 1997. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico. Nature 389 (6648): 275–278. https://doi.org/10.1038/38477.

    Article  Google Scholar 

  • Goñi, M.A., K.C. Ruttenberg, and T.I. Eglinton. 1998. A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico. Geochimica et Cosmochimica Acta 62 (18): 3055–3075. https://doi.org/10.1016/S0016-7037(98)00217-8.

    Article  Google Scholar 

  • Gordon, E.S., and M.A. Goñi. 2003. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico. Geochimica et Cosmochimica Acta 67 (13): 2359–2375. https://doi.org/10.1016/S0016-7037(02)01412-6.

    Article  CAS  Google Scholar 

  • Harms, S., and C.D. Winant. 1998. Characteristic patterns of the circulation in the Santa Barbara Channel. Journal of Geophysical Research: Oceans 103 (C2): 3041–3065. https://doi.org/10.1029/97JC02393.

    Article  Google Scholar 

  • Hedges, J.I., and J.R. Ertel. 1982. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Analytical Chemistry 54 (2): 174–178. https://doi.org/10.1021/ac00239a007.

    Article  CAS  Google Scholar 

  • Hedges, J.I., and D.C. Mann. 1979a. The characterization of plant tissues by their lignin oxidation products. Geochimica et Cosmochimica Acta 43 (11): 1803–1807. https://doi.org/10.1016/0016-7037(79)90028-0.

    Article  CAS  Google Scholar 

  • Hedges, J.I., and D.C. Mann. 1979b. The lignin geochemistry of marine sediments from the southern Washington coast. Geochimica et Cosmochimica Acta 43 (11): 1809–1818. https://doi.org/10.1016/0016-7037(79)90029-2.

    Article  CAS  Google Scholar 

  • Hedges, J.I., and P. Parker. 1976. Land-derived organic matter in surface sediments from the Gulf of Mexico. Geochimica et Cosmochimica Acta 40 (9): 1019–1029.

    Article  CAS  Google Scholar 

  • Hedges, J.I., W.A. Clark, P.D. Quay, J.E. Richey, A.H. Devol, and U.M. de Santos. 1986. Compositions and fluxes of particulate organic material in the Amazon River. Limnology and Oceanography 31 (4): 717–738.

    Article  CAS  Google Scholar 

  • Hedges, J.I., R.A. Blanchette, K. Weliky, and A.H. Devol. 1988. Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study. Geochimica et Cosmochimica Acta 52 (11): 2717–2726.

    Article  CAS  Google Scholar 

  • Hedges, J.I., R.G. Keil, and R. Benner. 1997. What happens to terrestrial organic matter in the ocean? Organic Geochemistry 27 (5-6): 195–212. https://doi.org/10.1016/S0146-6380(97)00066-1.

    Article  CAS  Google Scholar 

  • Hernes, P.J., A.C. Robinson, and A.K. Aufdenkampe. 2007. Fractionation of lignin during leaching and sorption and implications for organic matter “freshness”. Geophysical Research Letters 34 (17). https://doi.org/10.1029/2007GL031017.

  • Hothorn, T., Bretz, F., Westfall, P., Heiberger, R.M., Schuetzenmeister, A., Scheibe, S., 2017. multcomp: Simultaneous inference in general parametric models.

  • Houel, S., P. Louchouarn, M. Lucotte, R. Canuel, and B. Ghaleb. 2006. Translocation of soil organic matter following reservoir impoundment in boreal systems: Implications for in situ productivity. Limnology and Oceanography 51 (3): 1497–1513.

    Article  CAS  Google Scholar 

  • Kahle, D., and H. Wickham. 2013. ggmap: Spatial Visualization with ggplot2. The R Journal 5: 144–161 http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf.

    Article  Google Scholar 

  • Klap, V.A., Hemminga, M.A., Boon, J.J., 2000. Retention of lignin in seagrasses: Angiosperms that returned to the sea. Marine Ecology Progress Series 1–11.

  • Louchouarn, P., M. Lucotte, and N. Farella. 1999. Historical and geographical variations of sources and transport of terrigenous organic matter within a large-scale coastal environment. Organic Geochemistry 30 (7): 675–699.

    Article  CAS  Google Scholar 

  • Louchouarn, P., S. Opsahl, and R. Benner. 2000. Isolation and quantification of dissolved lignin from natural waters using solid-phase extraction and GC/MS. Analytical Chemistry 72 (13): 2780–2787. https://doi.org/10.1021/ac9912552.

    Article  CAS  Google Scholar 

  • Louchouarn, P., R.M.W. Amon, S. Duan, C. Pondell, S.M. Seward, and N. White. 2010. Analysis of lignin-derived phenols in standard reference materials and ocean dissolved organic matter by gas chromatography/tandem mass spectrometry. Marine Chemistry 118 (1-2): 85–97. https://doi.org/10.1016/j.marchem.2009.11.003.

    Article  CAS  Google Scholar 

  • Martone, P.T., J.M. Estevez, F. Lu, K. Ruel, M.W. Denny, C. Somerville, and J. Ralph. 2009. Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Current Biology 19 (2): 169–175. https://doi.org/10.1016/j.cub.2008.12.031.

    Article  CAS  Google Scholar 

  • Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X., Gomis, M.I., Lonnoy, E., Maycock, T., Tignor, M., Waterfield, T. (ed.), 2018. Global Warming of 1.5oC. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/sr15/.

  • Melack, J., 2019. SBC LTER: Land: Stream chemistry in the Santa Barbara Coastal drainage area, ongoing since 2000 ver 16. Santa Barbara Coastal Long Term Ecological Research Project. https://doi.org/10.6073/pasta/67a558a24ceed9a0a5bf5e46ab841174.

  • Millar, R.B., and M.J. Anderson. 2004. Remedies for pseudoreplication. Fisheries Research 70 (2-3): 397–407. https://doi.org/10.1016/j.fishres.2004.08.016.

    Article  Google Scholar 

  • Moingt, M., M. Lucotte, S. Paquet, and B. Ghaleb. 2014. Deciphering the impact of land-uses on terrestrial organic matter and mercury inputs to large boreal lakes of central Québec using lignin biomarkers. Applied Geochemistry 41: 34–48. https://doi.org/10.1016/j.apgeochem.2013.11.008.

    Article  CAS  Google Scholar 

  • Moingt, M., M. Lucotte, and S. Paquet. 2016. Lignin biomarkers signatures of common plants and soils of Eastern Canada. Biogeochemistry 129 (1-2): 133–148. https://doi.org/10.1007/s10533-016-0223-7.

    Article  CAS  Google Scholar 

  • Murphy, S.F., J.H. Writer, R.B. McCleskey, and D.A. Martin. 2015. The role of precipitation type, intensity, and spatial distribution in source water quality after wildfire. Environmental Research Letters 10 (8): 084007. https://doi.org/10.1088/1748-9326/10/8/084007.

    Article  CAS  Google Scholar 

  • Onstad, G.D., D.E. Canfield, P.D. Quay, and J.I. Hedges. 2000. Sources of particulate organic matter in rivers from the continental USA: Lignin phenol and stable carbon isotope compositions. Geochimica et Cosmochimica Acta 64 (20): 3539–3546.

    Article  CAS  Google Scholar 

  • Opsahl, S., and R. Benner. 1995. Early diagenesis of vascular plant tissues: Lignin and cutin decomposition and biogeochemical implications. Geochimica et Cosmochimica Acta 59 (23): 4889–4904.

    Article  CAS  Google Scholar 

  • Opsahl, S., and R. Benner. 1997. Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature 386 (6624): 480–482.

    Article  CAS  Google Scholar 

  • Page, H., D. Reed, M. Brzezinski, J. Melack, and J. Dugan. 2008. Assessing the importance of land and marine sources of organic matter to kelp forest food webs. Marine Ecology Progress Series 360: 47–62. https://doi.org/10.3354/meps07382.

    Article  Google Scholar 

  • Page, H.M., Lowman, H.E., Melack, J.M., Smith, J.M., Reed, D.C., 2018. SBC LTER: OCEAN: Particulate organic matter content and composition of stream, estuarine, and marine sediments. Environmental Data Initiative. https://doi.org/10.6073/pasta/05ca288d7203107bddab618e95524c0a.

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Van Willigen, B., 2019. nlme: Linear and nonlinear mixed effects models.

  • Poppe, L.J., Eliason, A.H., Fredericks, J.J., Rendigs, R.R., Blackwood, D., Polloni, C.F., 2000. USGS East-Coast sediment analysis: Procedures, database, and georeferenced displays (Open-File No. 00–358). U.S. Geological Survey.

  • Prahl, F.G., J.R. Ertel, M.A. Goni, M.A. Sparrow, and B. Eversmeyer. 1994. Terrestrial organic carbon contributions to sediments on the Washington margin. Geochimica et Cosmochimica Acta 58 (14): 3035–3048.

    Article  CAS  Google Scholar 

  • Revell, D.L., J.E. Dugan, and D.M. Hubbard. 2011. Physical and ecological responses of sandy beaches to the 1997-98 El Niño. Journal of Coastal Research 27: 718–730.

    Article  Google Scholar 

  • Santa Barbara County Flood Control District, 2019. Official Daily Rainfall Record. http://www.countyofsb.org/pwd/hydrology.sbc.

  • Savage, C., S.F. Thrush, A.M. Lohrer, and J.E. Hewitt. 2012. Ecosystem services transcend boundaries: Estuaries provide resource subsidies and influence functional diversity in coastal benthic communities. PLoS ONE 7 (8): e42708. https://doi.org/10.1371/journal.pone.0042708.

    Article  CAS  Google Scholar 

  • Sommerfield, C.K., Lee, H.J., Normark, W.R., 2009. Postglacial sedimentary record of the Southern California continental shelf and slope, Point Conception to Dana Point, in: Earth Science in the Urban Ocean: The Southern California Continental Borderland. Geological Society of America. https://doi.org/10.1130/2009.2454(2.5)

  • Sun, S., E. Schefuß, S. Mulitza, C.M. Chiessi, A.O. Sawakuchi, M. Zabel, P.A. Baker, J. Hefter, and G. Mollenhauer. 2017. Origin and processing of terrestrial organic carbon in the Amazon system: Lignin phenols in river, shelf, and fan sediments. Biogeosciences 14 (9): 2495–2512. https://doi.org/10.5194/bg-14-2495-2017.

    Article  CAS  Google Scholar 

  • Tesi, T., L. Langone, M.A. Goñi, M. Turchetto, S. Miserocchi, and A. Boldrin. 2008. Source and composition of organic matter in the Bari canyon (Italy): Dense water cascading versus particulate export from the upper ocean. Deep Sea Research Part I: Oceanographic Research Papers 55 (7): 813–831. https://doi.org/10.1016/j.dsr.2008.03.007.

    Article  Google Scholar 

  • Thevenot, M., M.-F. Dignac, and C. Rumpel. 2010. Fate of lignins in soils: A review. Soil Biology and Biochemistry 42 (8): 1200–1211. https://doi.org/10.1016/j.soilbio.2010.03.017.

    Article  CAS  Google Scholar 

  • Warrick, J.A., J.M. Melack, and B.M. Goodridge. 2015. Sediment yields from small, steep coastal watersheds of California. Journal of Hydrology: Regional Studies 4: 516–534. https://doi.org/10.1016/j.ejrh.2015.08.004.

    Article  Google Scholar 

  • Washburn, L., Brzezinski, M.A., Carlson, C.A., Siegel, D.A., 2019. SBC LTER: Ocean: Ocean Currents and Biogeochemistry: Nearshore water profiles (monthly CTD and chemistry). Santa Barbara Coastal Long Term Ecological Research Project, Environmental Data Initiative. https://doi.org/10.6073/pasta/b73d76d8d1465207be6d7fed19291fda.

  • Wickham, H. 2016. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.

    Book  Google Scholar 

  • Wickham, H., 2018. tidyr: Easily tidy data with “spread()” and “gather()” functions.

  • Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed effects models and extensions in ecology with R, Statistics for biology and health. New York, NY: Springer.

Download references

Acknowledgements

Sampling and laboratory assistance was provided by Clint Nelson, Shannon Harrer, Christie Yorke, Georges Paradis, Matthew Meyerhof, Laura Beresford, and Brittany Beecher. Statistical guidance was provided by Ana Miller-ter Kuile. Dan Reed, Bob Miller, Jason Smith, and Craig Carlson provided additional project support. This manuscript was improved by edits from Sally MacIntyre and Mark Brzezinski.

Funding

This project was funded by the National Science Foundation (OCE-1623590) and the Santa Barbara Coastal Long Term Ecological Research Project (OCE-1232779).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heili Lowman.

Additional information

Communicated by Zhanfei Liu

Supplementary Information

Table A1

Sampling site codes with corresponding site names and environments. (PNG 136 kb)

Table A2

Lignin CuO indicators from studies using the same reference standard (SAG 05: estuarine sediment) alongside results from this study (Louchouarn et al. 2000; Moingt et al. 2016). ND = not determinable. (PNG 111 kb)

Table A3

Mean and standard deviation values for carbon, nitrogen, and lignin content. (PNG 510 kb)

Table A4

Linear mixed effects model results, with significant fixed effects in bold. (PNG 454 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lowman, H., Moingt, M., Lucotte, M. et al. Terrestrial Organic Matter Inputs to Nearshore Marine Sediment Under Prolonged Drought Followed by Significant Rainfall as Indicated by Lignin. Estuaries and Coasts 44, 2159–2172 (2021). https://doi.org/10.1007/s12237-021-00931-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-021-00931-4

KEY WORDS

Navigation