Skip to main content

Herbivory Has a Major Influence on Structure and Condition of a Great Barrier Reef Subtropical Seagrass Meadow

Abstract

Grazing by all members of an herbivore community can act to structure the ecosystems they feed on. The outcome of this grazing pressure on the plant community also depends on the interaction between different herbivore groups that are present. We carried out a three-month multi-level field exclusion experiment to understand how different groups of herbivores act both individually and interactively to structure a subtropical seagrass meadow in the Great Barrier Reef. Megaherbivore grazing had the largest impact on this seagrass meadow, significantly reducing aboveground biomass and shoot height, whereas there was no measurable impact of meso- or macroherbivores on seagrass metrics or epiphyte biomass. Megaherbivores here grazed broadly across the meadow instead of targeting grazing in one area. The principal seagrass-herbivore dynamic in this meadow is that megaherbivores are the main group modifying meadow structure, and other grazer groups that are present in lower numbers do not individually or interactively structure the meadow. We demonstrate that herbivory by large grazers can significantly modify seagrass meadow characteristics. This has important implications when designing and interpreting the results of monitoring programs that seek to conserve seagrass meadows, the ecosystem services that they provide and the herbivores that rely on them. Collectively, our results and those of similar previous studies emphasize there is unlikely to be one seagrass and herbivory paradigm. Instead, for individual meadows, their unique species interactions and differences in biotic and abiotic drivers of seagrass change are likely to have a strong influence on the dominant seagrass-herbivore dynamic.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alcoverro, T., and S. Mariani. 2004. Patterns of fish and sea urchin grazing on tropical Indo-Pacific seagrass beds. Ecography 3 (3): 361–365. https://doi.org/10.1111/j.0906-7590.2004.03736.x.

    Article  Google Scholar 

  2. Anderson, M.J. 2004. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26 (1): 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x.

    Article  Google Scholar 

  3. Aragones, L., and H. Marsh. 2000. Impact of dugong grazing and turtle cropping on tropical seagrass communities. Pacific Conservation Biology 5 (4): 286–288. https://doi.org/10.1071/PC000277.

    Article  Google Scholar 

  4. Aragones, L.V., I.R. Lawler, W.J. Foley, and H. Marsh. 2006. Dugong grazing and turtle cropping: Grazing optimization in tropical seagrass systems? Oecologia 149 (4): 635–647. https://doi.org/10.1007/s00442-006-0477-1.

    Article  Google Scholar 

  5. Arthur, R., N. Kelkar, T. Alcoverro, and M.D. Madhusudan. 2013. Complex ecological pathways underlie perceptions of conflict between green turtles and fishers in the Lakshadweep Islands. Biological Conservation 167. 25–34. https://doi.org/10.1016/j.biocon.2013.07.014.

  6. Atwood, T.B., R.M. Connolly, E.G. Ritchie, C.E. Lovelock, M.R. Heithaus, G.C. Hays, J.W. Fourqurean, and P.I. Macreadie. 2015. Predators help protect carbon stocks in blue carbon ecosystems. Nature Climate Change 5 (12): 1038–1045. https://doi.org/10.1038/NCLIMATE2763.

    Article  Google Scholar 

  7. Baden, S., C. Boström, S. Tobiasson, H. Arponen, and P.O. Moksnes. 2010. Relative importance of trophic interactions and nutrient enrichment in seagrass ecosystems: A broad-scale field experiment in the Baltic-Skagerrak area. Limnology and Oceanography 55 (3): 1435–1448. https://doi.org/10.4319/lo.2010.55.3.1435.

    CAS  Article  Google Scholar 

  8. Bakker, E.S., J.F. Pagès, R. Arthur, and T. Alcoverro. 2016. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems. Ecography 39 (2): 162–179. https://doi.org/10.1111/ecog.01651.

    Article  Google Scholar 

  9. Bartoń, K. 2019. MuMIn: Multi-model inference. R package version 1 (43): 6.

    Google Scholar 

  10. Bessey, C., M.R. Heithaus, J.W. Fourqurean, K.R. Gastrich, and D.A. Burkholder. 2016. Importance of teleost macrograzers to seagrass composition in a subtropical ecosystem with abundant populations of megagrazers and predators. Marine Ecology Progress Series 553: 81–92. https://doi.org/10.3354/meps11790.

    Article  Google Scholar 

  11. Bjorndal, K.A. 1980. Nutrition and grazing behavior of the green turtle Chelonia mydas. Marine Biology 56 (2): 147–154. https://doi.org/10.1007/BF00397131.

    CAS  Article  Google Scholar 

  12. Brearley, A., G.A. Kendrick, and D.I. Walker. 2008. How does burrowing by the isopod Limnoria agrostisa (Crustacea: Limnoriidae) affect the leaf canopy of the southern Australian seagrass Amphibolis griffithii? Marine Biology 156 (1): 65–77. https://doi.org/10.1007/s00227-008-1065-1.

    Article  Google Scholar 

  13. Chartrand, Kathryn M., C.V. Bryant, A.B. Carter, P.J. Ralph, and M.A. Rasheed. 2016. Light thresholds to prevent dredging impacts on the great barrier reef seagrass, Zostera muelleri ssp. capricorni. Frontiers in Marine Science 3: 1–17. https://doi.org/10.3389/fmars.2016.00106.

    Article  Google Scholar 

  14. Chartrand, K. M., J.N. Wells, and M.A. Rasheed. 2019. Seagrasses in Port Curtis and Rodds Bay 2018: Annual long-term monitoring. Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 19/02, James Cook University, Cairns: 63 pp.

  15. Christianen, M.J.A., L.L. Govers, T.J. Bouma, W. Kiswara, J.G.M. Roelofs, L.P.M. Lamers, and M.M. van Katwijk. 2012. Marine megaherbivore grazing may increase seagrass tolerance to high nutrient loads. Journal of Ecology 100 (2): 546–560. https://doi.org/10.1111/j.1365-2745.2011.01900.x.

    CAS  Article  Google Scholar 

  16. Christianen, M.J.A., P.M.J. Herman, T.J. Bouma, L.P.M. Lamers, M.M. van Katwijk, T. van der Heide, P.J. Mumby, B.R. Silliman, S.L. Engelhard, M. van de Kerk, W. Kiswara, and J. van de Koppel. 2014. Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas. Proceedings of the Royal Society B: Biological Sciences 281 (1777): 20132890. https://doi.org/10.1098/rspb.2013.2890.

    Article  Google Scholar 

  17. Coles, R.G., M.A. Rasheed, L.J. McKenzie, A. Grech, P.H. York, M. Sheaves, S. McKenna, and C. Bryant. 2014. The Great Barrier Reef World Heritage Area seagrasses: Managing this iconic Australian ecosystem resource for the future. Estuarine, Coastal and Shelf Science 153: A1–A12. https://doi.org/10.1016/j.ecss.2014.07.020.

    Article  Google Scholar 

  18. Connolly, R.M., D.R. Currie, K.F. Danaher, M. Dunning, A. Melzer, J.R. Platten, D. Shearer, P.J. Stratford, P.R. Teasdale, and M. Vandergragt. 2006. Intertidal wetlands of Port Curtis: Ecological patterns and proccesses and their implications. Technical Report No. 43, CRC for Coastal Zone, Estuary and Waterway Management, Brisbane.

  19. Cook, K., M.A. Vanderklift, and A.G.B. Poore. 2011. Strong effects of herbivorous amphipods on epiphyte biomass in a temperate seagrass meadow. Marine Ecology Progress Series 442: 263–269. https://doi.org/10.3354/meps09446.

    Article  Google Scholar 

  20. Cullen-Unsworth, L.C., L.M. Nordlund, J. Paddock, S. Baker, L.J. McKenzie, and R.K.F. Unsworth. 2014. Seagrass meadows globally as a coupled social-ecological system: Implications for human wellbeing. Marine Pollution Bulletin 83 (2): 387–397. https://doi.org/10.1016/j.marpolbul.2013.06.001.

    CAS  Article  Google Scholar 

  21. De Boer, W.F. 2007. Seagrass-sediment interactions, positive feedbacks and critical thresholds for occurrence: A review. Hydrobiologia 591 (1): 5–24. https://doi.org/10.1007/s10750-007-0780-9.

    CAS  Article  Google Scholar 

  22. Domning, D.P. 2001. Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean. Palaeogeography, Palaeoclimatology, Palaeoecology 166 (1-2): 27–50. https://doi.org/10.1016/S0031-0182(00)00200-5.

    Article  Google Scholar 

  23. Duarte, C.M., and H. Kirkman. 2001. Methods for the measurement of seagrass abundance and depth distribution. In Global seagrass research methods, ed. Frederick T. Short and Robert G. Coles, p 141−153. Elsevier, Amsterdam.

  24. Duffy, J.E., P.L. Reynolds, C. Boström, J.A. Coyer, M. Cusson, S. Donadi, J.G. Douglass, J.S. Eklöf, A.H. Engelen, B.K. Eriksson, S. Fredriksen, L. Gamfeldt, C. Gustafsson, G. Hoarau, M. Hori, K. Hovel, K. Iken, J.S. Lefcheck, P.O. Moksnes, M. Nakaoka, M.I. O'Connor, J.L. Olsen, J.P. Richardson, J.L. Ruesink, E.E. Sotka, J. Thormar, M.A. Whalen, and J.J. Stachowicz. 2015. Biodiversity mediates top-down control in eelgrass ecosystems: A global comparative-experimental approach. Ecology Letters 18 (7): 696–705. https://doi.org/10.1111/ele.12448.

    Article  Google Scholar 

  25. Duffy, J.E., L. Benedetti-Cecchi, J. Trinanes, F.E. Muller-Karger, R. Ambo-Rappe, C. Boström, A.H. Buschmann, J. Byrnes, R.G. Coles, J. Creed, L.C. Cullen-Unsworth, G. Diaz-Pulido, C.M. Duarte, G.J. Edgar, M. Fortes, G. Goni, C. Hu, X. Huang, C.L. Hurd, C. Johnson, B. Konar, D. Krause-Jensen, K. Krumhansl, P. Macreadie, H. Marsh, L.J. McKenzie, N. Mieszkowska, P. Miloslavich, E. Montes, M. Nakaoka, K.M. Norderhaug, L.M. Norlund, R.J. Orth, A. Prathep, N.F. Putman, J. Samper-Villarreal, E.A. Serrao, F. Short, I.S. Pinto, P. Steinberg, R. Stuart-Smith, R.K.F. Unsworth, M. van Keulen, B.I. van Tussenbroek, M. Wang, M. Waycott, L.V. Weatherdon, T. Wernberg, and S.M. Yaakub. 2019. Toward a coordinated global observing system for seagrasses and marine macroalgae. Frontiers in Marine Science 6:317. https://doi.org/10.3389/fmars.2019.00317.

  26. Ebrahim, A., A.D. Olds, P.S. Maxwell, K.A. Pitt, D.D. Burfeind, and R.M. Connolly. 2014. Herbivory in a subtropical seagrass ecosystem: Separating the functional role of different grazers. Marine Ecology Progress Series 511: 83–91. https://doi.org/10.3354/meps10901.

    Article  Google Scholar 

  27. Eklöf, J.S., M. de la Torre-Castro, M. Gullström, J. Uku, N. Muthiga, T. Lyimo, and S.O. Bandeira. 2008. Sea urchin overgrazing of seagrasses: A review of current knowledge on causes, consequences, and management. Estuarine, Coastal and Shelf Science 79 (4): 569–580. https://doi.org/10.1016/j.ecss.2008.05.005.

    Article  Google Scholar 

  28. Fourqurean, J.W., S. Manuel, K.A. Coates, W.J. Kenworthy, and S.R. Smith. 2010. Effects of excluding sea turtle herbivores from a seagrass bed: Overgrazing may have led to loss of seagrass meadows in Bermuda. Marine Ecology Progress Series 419: 223–232. https://doi.org/10.3354/meps08853.

    Article  Google Scholar 

  29. Fourqurean, J.W., S.A. Manuel, K.A. Coates, S.C. Massey, and W.J. Kenworthy. 2019. Decadal monitoring in Bermuda shows a widespread loss of seagrasses attributable to overgrazing by the green sea turtle Chelonia mydas. Estuaries and Coasts 42 (6): 1524–1540. https://doi.org/10.1007/s12237-019-00587-1.

    CAS  Article  Google Scholar 

  30. Gladstone Healthy Harbour Partnership (2019) Technical report, Gladstone Harbour Report Card 2019, GHHP Technical Report No. 6. Gladstone Healthy Harbour Partnership, Gladstone

  31. Hearne, E.L., R.A. Johnson, A.G. Gulick, A. Candelmo, A.B. Bolten, and K.A. Bjorndal. 2018. Effects of green turtle grazing on seagrass and macroalgae diversity vary spatially among seagrass meadows. Aquatic Botany 152: 10–15. https://doi.org/10.1016/j.aquabot.2018.09.005.

    Article  Google Scholar 

  32. Heck, K.L., and J.F. Valentine. 2006. Plant-herbivore interactions in seagrass meadows. Journal of Experimental Marine Biology and Ecology 330 (1): 420–436. https://doi.org/10.1016/j.jembe.2005.12.044.

    Article  Google Scholar 

  33. Heck, K.L., G. Hays, and R.J. Orth. 2003. Critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series 253: 123–136. https://doi.org/10.3354/meps253123.

    Article  Google Scholar 

  34. Heck, K.L., T.J.B. Carruthers, C.M. Duarte, A. Randall Hughes, G. Kendrick, R.J. Orth, and S.W. Williams. 2008. Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems 11 (7): 1198–1210. https://doi.org/10.1007/s10021-008-9155-y.

    Article  Google Scholar 

  35. Heithaus, M.R., T. Alcoverro, R. Arthur, D.A. Burkholder, K.A. Coates, M.J.A. Christianen, N. Kelkar, S.A. Manuel, A.J. Wirsing, W.J. Kenworthy, and J.W. Fourqurean. 2014. Seagrasses in the age of sea turtle conservation and shark overfishing. Frontiers in Marine Science 1: 1–6. https://doi.org/10.3389/fmars.2014.00028.

    Article  Google Scholar 

  36. Hernández, A.L.M., and B.I. Van Tussenbroek. 2014. Patch dynamics and species shifts in seagrass communities under moderate and high grazing pressure by green sea turtles. Marine Ecology Progress Series 517: 143–157. https://doi.org/10.3354/meps11068.

    Article  Google Scholar 

  37. Hoffmann, L., W. Edwards, P.H. York, and M.A. Rasheed. 2020. Richness of primary producers and consumer abundance mediate epiphyte loads in a tropical seagrass system. Diversity 12: 384. https://doi.org/10.3390/d12100384.

  38. Holzer, K.K., D.A. Seekell, and K.J. McGlathery. 2013. Bucktooth parrotfish Sparisoma radians grazing on Thalassia in Bermuda varies seasonally and with background nitrogen content. Journal of Experimental Marine Biology and Ecology 443: 27–32. https://doi.org/10.1016/j.jembe.2013.02.031.

    Article  Google Scholar 

  39. Hughes, A.R., K.J. Bando, L.F. Rodriguez, and S.L. Williams. 2004. Relative effects of grazers and nutrients on seagrasses: A meta-analysis approach. Marine Ecology Progress Series 282: 87–99. https://doi.org/10.3354/meps282087.

    Article  Google Scholar 

  40. Jackson, J.B.C. 2001. What was natural in the coastal oceans? Proceedings of the National Academy of Sciences of the United States of America 98 (10): 5411–5418. https://doi.org/10.1073/pnas.091092898.

    CAS  Article  Google Scholar 

  41. Jinks, K.I., C.J. Brown, M.A. Rasheed, A.L. Scott, M. Sheaves, P.H. York, and R.M. Connolly. 2019. Habitat complexity influences the structure of food webs in Great Barrier Reef seagrass meadows. Ecosphere 10 (11): e02928. https://doi.org/10.1002/ecs2.2928.

  42. Johnson, R.A., A.G. Gulick, N. Constant, A.B. Bolten, F.O.H. Smulders, M.J.A. Christianen, M.I. Nava, K. Kolasa, and K.A. Bjorndal. 2019. Seagrass ecosystem metabolic carbon capture in response to green turtle grazing across Caribbean meadows. Journal of Ecology 108 (3): 1–14. https://doi.org/10.1111/1365-2745.13306.

    Article  Google Scholar 

  43. Johnson, R.A., K.M. Hanes, A.B. Bolten, and K.A. Bjorndal. 2020. Simulated green turtle grazing affects benthic infauna abundance and community composition but not diversity in a Thalassia testudinum seagrass meadow. Journal of Experimental Marine Biology and Ecology 522: 151266. https://doi.org/10.1016/j.jembe.2019.151266.

  44. Kelkar, N., R. Arthur, N. Marba, and T. Alcoverro. 2013. Green turtle herbivory dominates the fate of seagrass primary production in the Lakshadweep islands (Indian Ocean). Marine Ecology Progress Series 485: 235–243. https://doi.org/10.3354/meps10406.

    Article  Google Scholar 

  45. Kirk, J.T.O. 1994. Light and photosynthesis in aquatic ecosystems. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139168212.

    Book  Google Scholar 

  46. Kollars, N.M., A.K. Henry, M.A. Whalen, K.E. Boyer, M. Cusson, J.S. Eklöf, C.M. Hereu, P. Jorgensen, S.L. Kiriakopolos, P.L. Reynolds, F. Tomas, M.S. Turner, and J.L. Ruesink. 2017. Meta-analysis of reciprocal linkages between temperate seagrasses and waterfowl with implications for conservation. Frontiers in Plant Science 8: 1–14. https://doi.org/10.3389/fpls.2017.02119.

    Article  Google Scholar 

  47. Kuiper-Linley, M., C.R. Johnson, and J.M. Lanyon. 2007. Effects of simulated green turtle regrazing on seagrass abundance, growth and nutritional status in Moreton Bay, south-east Queensland, Australia. Marine and Freshwater Research 58 (5): 492–503. https://doi.org/10.1071/MF06241.

    CAS  Article  Google Scholar 

  48. Lal, A., R. Arthur, N. Marbà, A. W. T. Lill, T. Alcoverro. 2010. Implications of conserving an ecosystem modifier: Increasing green turtle (Chelonia mydas) densities substantially alters seagrass meadows. Biological Conservation 143 (11):2730–2738. https://doi.org/10.1016/j.biocon.2010.07.020.

  49. Langdon, M.W., E.I. Paling, and M. Van Keulen. 2011. The development of urchin barrens in seagrass meadows at Luscombe Bay, Western Australia from 1985 to 2004. Pacific Conservation Biology 17 (1): 48–53. https://doi.org/10.1071/PC110048.

    Article  Google Scholar 

  50. Lee, C.L., Y.H. Huang, C.Y. Chung, S.C. Hsiao, and H.J. Lin. 2015. Herbivory in multi-species, tropical seagrass beds. Marine Ecology Progress Series 525: 65–80. https://doi.org/10.3354/meps11220.

    Article  Google Scholar 

  51. Lefebvre, L.W., J.P. Reid, W.J. Kenworthy, and J.A. Powell. 2000. Characterizing Manatee habitat use and seagrass grazing in Florida and Puerto Rico: Implications for conservation and management. Pacific Conservation Biology 5: 296–298.

    Google Scholar 

  52. Lenth, R. 2019. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.5.

  53. Lewis, L.S., and T.W. Anderson. 2012. Top-down control of epifauna by fishes enhances seagrass production. Ecology 93 (12): 2746–2757. https://doi.org/10.1890/12-0038.1.

    Article  Google Scholar 

  54. Limpus, C.J. 2008. A biological review of Australian Marine Turtles: ii. Green Turtle Chelonia mydas (Linnaeus). Queensland Government Environmental Protection Agency: 100 pp.

  55. Limpus, C.J., N. FitzSimmons, K. Finlayson, C. Harmonn, A. McKinnon, J. Sergeev, and T. Shimada. 2017. Increase the Understanding of the Green Turtle Population in Port Curtis. Brisbane: Department of Environment and Science, Queensland Government. Report produced for the Ecosystem Research and Monitoring Program Advisory Panel as part of Gladstone Ports Corporation Ecosystem Research and Monitoring Program: 28 pp.

  56. Marsh, H., P.W. Channells, G.E. Heinsohn, and J. Morrissey. 1982. Analysis of stomach contents of dugongs from Queensland. Wildlife Research 9 (1): 55–67. https://doi.org/10.1071/WR9820055.

    Article  Google Scholar 

  57. McSkimming, C., J.E. Tanner, B.D. Russell, and S.D. Connell. 2015. Compensation of nutrient pollution by herbivores in seagrass meadows. Journal of Experimental Marine Biology and Ecology 471: 112–118. https://doi.org/10.1016/j.jembe.2015.05.018.

    Article  Google Scholar 

  58. Mellors, J.E. 1991. An evaluation of a rapid visual technique for estimating seagrass biomass. Aquatic Botany 42 (1): 67–73. https://doi.org/10.1016/0304-3770(91)90106-F.

    Article  Google Scholar 

  59. Moran, K.L., and K.A. Bjorndal. 2005. Simulated green turtle grazing affects structure and productivity of seagrass pastures. Marine Ecology Progress Series 305: 235–247. https://doi.org/10.3354/meps305235.

    Article  Google Scholar 

  60. Myers, J.A., and K.L. Heck. 2013. Amphipod control of epiphyte load and its concomitant effects on shoalgrass Halodule wrightii biomass. Marine Ecology Progress Series 483: 133–142. https://doi.org/10.3354/meps10287.

    Article  Google Scholar 

  61. Nordlund, L.M., E.W. Koch, E.B. Barbier, and J.C. Creed. 2016. Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE 11 (10): 1–23. https://doi.org/10.1371/journal.pone.0163091.

    CAS  Article  Google Scholar 

  62. Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, and Peter R. Minchin, et al. 2019. vegan: Community Ecology Package. R package version 2: 5–5.

    Google Scholar 

  63. Orth, R.J., and J. Van Montfrans. 1984. Epiphyte-seagrass relationships with an emphasis on the role of micrograzing: A review. Aquatic Botany 18 (1-2): 43–69. https://doi.org/10.1016/0304-3770(84)90080-9.

    Article  Google Scholar 

  64. Pagès, J.F., S. Farina, A. Gera, R. Arthur, J. Romero, and T. Alcoverro. 2012. Indirect interactions in seagrasses: Fish herbivores increase predation risk to sea urchins by modifying plant traits. Functional Ecology 26 (5): 1015–1023. https://doi.org/10.1111/j.1365-2435.2012.02038.x.

    Article  Google Scholar 

  65. Poore, A.G.B., A.H. Campbell, and P.D. Steinberg. 2009. Natural densities of mesograzers fail to limit growth of macroalgae or their epiphytes in a temperate algal bed. Journal of Ecology 97 (1): 164–175. https://doi.org/10.1111/j.1365-2745.2008.01457.x.

    Article  Google Scholar 

  66. Prado, P., S. Farina, F. Tomas, J. Romero, and T. Alcoverro. 2008. Marine protection and meadow size alter fish herbivory in seagrass ecosystems. Marine Ecology Progress Series 371: 11–21. https://doi.org/10.3354/meps07662.

    Article  Google Scholar 

  67. Preen, A. 1995. Impacts of dugong foraging on seagrass habitats: Observational and experimental evidence for cultivation grazing. Marine Ecology Progress Series 124: 201–213. https://doi.org/10.3354/meps124201.

    Article  Google Scholar 

  68. R Core Team. 2019. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

  69. Rasheed, M.A. 2004. Recovery and succession in a multi-species tropical seagrass meadow following experimental disturbance: The role of sexual and asexual reproduction. Journal of Experimental Marine Biology and Ecology 310 (1): 13–45. https://doi.org/10.1016/j.jembe.2004.03.022.

    Article  Google Scholar 

  70. Rasheed, M.A., and R.K.F. Unsworth. 2011. Long-term climate-associated dynamics of a tropical seagrass meadow: Implications for the future. Marine Ecology Progress Series 422: 93–103. https://doi.org/10.3354/meps08925.

    Article  Google Scholar 

  71. Rasheed, M. A., D. O’ Grady, E. Scott, P. H. York and A. B. Carter. 2017. Dugong feeding ecology and habitat use on intertidal banks of Port Curtis and Rodds Bay – Final report. Report produced for the Ecosystem Research and Monitoring Program Advisory Panel as part of Gladstone Ports Corporation’s Ecosystem Research and Monitoring Program. Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER) Publication 16/14,: 68pp.

  72. Reynolds, P.L., J. Paul Richardson, and J.E. Duffy. 2014. Field experimental evidence that grazers mediate transition between microalgal and seagrass dominance. Limnology and Oceanography 59 (3): 1053–1064. https://doi.org/10.4319/lo.2014.59.3.1053.

    Article  Google Scholar 

  73. Ricart, A.M., P.H. York, C.V. Bryant, M.A. Rasheed, D. Ierodiaconou, and P.I. Macreadie. 2020. High variability of Blue Carbon storage in seagrass meadows at the estuary scale. Scientific Reports 10 (1): 1–12. https://doi.org/10.1038/s41598-020-62639-y.

    CAS  Article  Google Scholar 

  74. Rossini, R., J. Rueda, and I. Tibbetts. 2014. Feeding ecology of the seagrass-grazing nerite Smaragdia souverbiana (Montrouzier, 1863) in subtropical seagrass beds of eastern Australia. Journal of Molluscan Studies 80 (2): 139–147. https://doi.org/10.1093/mollus/eyu003.

    Article  Google Scholar 

  75. Scott, A.L., P.H. York, C. Duncan, P.I. Macreadie, R.M. Connolly, M.T. Ellis, J.C. Jarvis, K.I. Jinks, H. Marsh, and M.A. Rasheed. 2018. The role of herbivory in structuring tropical seagrass ecosystem service delivery. Frontiers in Plant Science 9: 127. https://doi.org/10.3389/fpls.2018.00127.

  76. Scott, A.L., P.H. York, and M.A. Rasheed. 2020. Grazing plot formation by green turtles in a Great Barrier Reef seagrass meadow points to a coevolved seagrass herbivore system. Marine Environmental Research 162. Elsevier Ltd: 105183. https://doi.org/10.1016/j.marenvres.2020.105183.

  77. Skilleter, G.A., C. Wegscheidl, and J.M. Lanyon. 2007. Effects of grazing by a marine mega-herbivore on benthic assemblages in a subtropical seagrass bed. Marine Ecology Progress Series 351: 287–300. https://doi.org/10.3354/meps07174.

    Article  Google Scholar 

  78. Swindells, K.L., R.J. Murdoch, Wi D. Bazen, N.W. Harman, and R.K.F. Unsworth. 2017. Habitat configuration alters herbivory across the tropical seascape. Frontiers in Marine Science 4: 48. https://doi.org/10.3389/fmars.2017.00048.

    Article  Google Scholar 

  79. Thayer, G.W., K.A. Bjorndal, J.C. Ogden, S.L. Williams, and F.C. Zieman. 1984. Role of larger herbivores in seagrass community. Estuaries 7 (4): 351–376.

    Article  Google Scholar 

  80. Tol, S.J., R.G. Coles, and B.C. Congdon. 2016. Dugong dugon feeding in tropical Australian seagrass meadows: Implications for conservation planning. PeerJ 4: 1–17. https://doi.org/10.7717/peerj.2194.

    CAS  Article  Google Scholar 

  81. Tol, S.J., J.C. Jarvis, P.H. York, A. Grech, B.C. Congdon, and R.G. Coles. 2017. Long distance biotic dispersal of tropical seagrass seeds by marine mega-herbivores. Scientific Reports. Springer US 7 (1): 4458. https://doi.org/10.1038/s41598-017-04421-1.

  82. Tomas, F., X. Turon, and J. Romero. 2005. Seasonal and small-scale spatial variability of herbivory pressure on the temperate seagrass Posidonia oceanica. Marine Ecology-Progress Series 301: 95–107. https://doi.org/10.3354/meps301095.

    Article  Google Scholar 

  83. Unsworth, R.K.F., J.D. Taylor, A. Powell, J.J. Bell, and D.J. Smith. 2007. The contribution of scarid herbivory to seagrass ecosystem dynamics in the Indo-Pacific. Estuarine, Coastal and Shelf Science 74 (1-2): 53–62. https://doi.org/10.1016/j.ecss.2007.04.001.

    Article  Google Scholar 

  84. Valentine, J.F., and J.E. Duffy. 2006. The central role of grazing in seagrass ecology. In Seagrasses: Biology, ecology, and conservation, ed. Anthony W. D. Larkum, Robert J. Orth, and Carlos M. Duarte. Springer.

  85. Whalen, M.A., J.E. Duffy, and J.B. Grace. 2013. Temporal shifts in top-down vs. bottom-up control of epiphytic algae in a seagrass ecosystem. Ecology 94 (2): 510–520. https://doi.org/10.1890/12-0156.1.

    Article  Google Scholar 

  86. Wickham, H. 2016. ggplot2: Elegant graphics for data analysis. Springer New York.

  87. Williams, S.L. 1988. Thalassia testudinum productivity and grazing by green turtles in a highly disturbed seagrass bed. Marine Biology 98 (3): 447–455. https://doi.org/10.1007/BF00391121.

    Article  Google Scholar 

  88. Zuur, A.F., J.M. Hilbe, and E.N. Ieno. 2013. A beginner’s guide to GLM and GLMM with R. A frequentist and Bayesian. Newburgh, United Kingdom: Highland Statistics Ltd.

Download references

Acknowledgements

The authors would like to thank the following: Seagrass Ecology Field and Lab Team for their assistance, P. Davey, L. Hoffman, H. Kish, A. Lee, P. Leeson, C. Reason, L. Shepherd, N. Smith, S. Tol, S. Troy, J. Wilkinson and to the volunteers: A. Bouet, A. Buckner, W. Christianson, L. Collins, T. Harris, J. Kramer, S. Kroon, M. Lercari, B. Ligasacchi, M. Lukac, F. Pastorelli, W. Sheedy and J. Valentine. Thanks are also given to A. Carter and R. Jones for statistical advice and to K. Jinks for providing detailed beam trawl data from her paper.

Funding

This research was supported through an Australian Research Council grant LP160100492 and Gladstone Ports Corporation. A.L.S. was supported by the Holsworth Wildlife Research Endowment (Ecological Society of Australia) and the National Environment Science Programme Tropical Water Quality Hub and an Australian Government Research Training Program Scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abigail L. Scott.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Masahiro Nakaoka

Supplementary Information

ESM 1

(DOCX 440 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scott, A.L., York, P.H. & Rasheed, M.A. Herbivory Has a Major Influence on Structure and Condition of a Great Barrier Reef Subtropical Seagrass Meadow. Estuaries and Coasts 44, 506–521 (2021). https://doi.org/10.1007/s12237-020-00868-0

Download citation

Keywords

  • Plant-herbivore interactions
  • Mesograzer
  • Megagrazer
  • Green turtle
  • Dugong