Seascape Configuration Influences the Community Structure of Marsh Nekton

Abstract

Around the globe, salt marsh ecosystems are rapidly changing, leading to alterations in both the amount, and configuration of marsh habitats. Sea level rise is a key driver of salt marsh change and is decreasing marsh habitat cover while increasing fragmentation. Such changes in seascape structure are expected to alter the ecological communities associated with marsh habitats. The influence of seascape structure on marsh nekton community structure is not well characterized, especially in coastal areas of the Gulf of Mexico, such as Louisiana (USA). Louisiana is losing marsh habitat at an unprecedented rate, and the resulting habitat loss and fragmentation provides a unique study system to investigate how marsh seascape structure impacts the nekton community. In this study, seascape structure was characterized at the 1- and 5-km scale at sampling points across several coastal basins to test marsh seascape structure effects on nekton community characteristics. Nekton communities were sampled using seine nets across coastal Louisiana in 2007. Total nekton community structure was found to be spatially driven. Both nekton species richness and nekton abundance were influenced by the shape of marsh patches and proportion of landscape marsh measured at either scale. While species richness differed only between some of the basins, each basin was found to have a statistically distinct community structure. Marsh shape influenced brown and white shrimp size. However, the response direction was found to be species specific, with brown shrimp size increasing in marshes with more complex shape while white shrimp size decreased. This study demonstrates that both environmental drivers and seascape structure play important roles in structuring marsh nekton communities, and that these responses can be species-specific. In order to project complex interactions between coastal land loss and their communities, a holistic framework of community structure, environmental drivers, and seascape characteristics is recommended.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Armitage, A.R., W.E. Highfield, S.D. Brody, and P. Louchouarn. 2015. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast. PLoS One. Public Library of Science 10 (5): e0125404.

    Article  Google Scholar 

  2. Atlas, W.I., D.T. Selbie, C.A. Holt, S. Cox-Rogers, C. Carr-Harris, K.J. Pitman, and J.W. Moore. 2020. Landscape and biophysical controls of lake productivity to inform evaluation of sockeye salmon (Oncorhynchus nerka) populations in data-limited regions. Limnology and Oceanography 65 (9): 2205–2219. https://doi.org/10.1002/lno.11448.

    Article  Google Scholar 

  3. Barton, K. 2020. MuMIn: Multi-Model Inference.

    Google Scholar 

  4. Bender, D.J., T.A. Contreras, and L. Fahrig. 1998. Habitat loss and population decline: A meta-analysis of the patch size effect. Ecology 79. Wiley online library: 517–533. https://doi.org/10.1890/0012-9658(1998)079[0517:HLAPDA]2.0.CO;2.

    Article  Google Scholar 

  5. Betts, M.G., L. Fahrig, A.S. Hadley, K.E. Halstead, J. Bowman, W.D. Robinson, J.A. Wiens, and D.B. Lindenmayer. 2014. A species-centered approach for uncovering generalities in organism responses to habitat loss and fragmentation. Ecography 37 (6): 517–527. https://doi.org/10.1111/ecog.00740.

    Article  Google Scholar 

  6. Boström, C., S.J. Pittman, C. Simenstad, and R.T. Kneib. 2011. Seascape ecology of coastal biogenic habitats: advances , gaps, and challenges. Marine Ecology Progress Series 427: 191–217. https://doi.org/10.3354/meps09051.

    Article  Google Scholar 

  7. Bryan-Brown, D.N., R.M. Connolly, D.R. Richards, F. Adame, D.A. Friess, and C.J. Brown. 2020. Global trends in mangrove forest fragmentation. Scientific Reports 10. Nature Publishing Group: 7117. https://doi.org/10.1038/s41598-020-63880-1.

    CAS  Article  Google Scholar 

  8. Cavanaugh, K.C., J.R. Kellner, A.J. Forde, D.S. Gruner, J.D. Parker, W. Rodriguez, and I.C. Feller. 2014. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences 111. National Acad Sciences: 723–727.

    CAS  Article  Google Scholar 

  9. Colombano, D., A. Manfree, T. O’Rear, J. Durand, and P. Moyle. 2020. Estuarine-terrestrial habitat gradients enhance nursery function for resident and transient fishes in the San Francisco estuary. Marine Ecology Progress Series 637: 141–157. https://doi.org/10.3354/meps13238.

    Article  Google Scholar 

  10. Colombano, D. D., S. Y. Litvin, R. E. Turner, C. A. Currin, J. Cebrián, C. L. Martin, S. B. Alford, M. A. Barbeau, et al. this issue. Climate change effects on tidal marsh structure, function, and persistence into the uncertain future. Estuaries and Coasts.

  11. Comeaux, R.S., M.A. Allison, and T.S. Bianchi. 2012. Mangrove expansion in the Gulf of Mexico with climate change: Implications for wetland health and resistance to rising sea levels. Estuarine, Coastal and Shelf Science 96. Elsevier: 81–95.

    CAS  Article  Google Scholar 

  12. Connolly, R.M., and J.S. Hindell. 2006. Review of nekton patterns and ecological processes in seagrass landscapes. Estuarine, Coastal and Shelf Science 68 (3-4): 433–444. https://doi.org/10.1016/j.ecss.2006.01.023.

    Article  Google Scholar 

  13. Couvillion, B.R., M.R. Fischer, H.J. Beck, and W.J. Sleavin. 2016. Spatial configuration trends in coastal Louisiana from 1985 to 2010. Wetlands 36 (2): 347–359. https://doi.org/10.1007/s13157-016-0744-9.

    Article  Google Scholar 

  14. Davis, B., R. Baker, and M. Sheaves. 2014. Seascape and metacommunity processes regulate fish assemblage structure in coastal wetlands. Marine Ecology Progress Series 500: 187–202. https://doi.org/10.3354/meps10680.

    Article  Google Scholar 

  15. Deza, A., and T. Anderson. 2010. Habitat fragmentation, patch size, and the recruitment and abundance of kelp forest fishes. Marine Ecology Progress Series 416: 229–240. https://doi.org/10.3354/meps08784.

    Article  Google Scholar 

  16. Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecological and Environmental Systems 34 (1): 487–515. https://doi.org/10.1146/132419.

    Article  Google Scholar 

  17. Fahrig, L. 2013. Rethinking patch size and isolation effects: the habitat amount hypothesis. Journal of Biogeography 40 (9): 1649–1663. https://doi.org/10.1111/jbi.12130.

    Article  Google Scholar 

  18. Froeschke, J.T., and G.W. Stunz. 2012. Hierarchical and interactive habitat selection in response to abiotic and biotic factors: the effect of hypoxia on habitat selection of juvenile estuarine fishes. Environmental Biology of Fishes 93 (1): 31–41. https://doi.org/10.1007/s10641-011-9887-y.

    Article  Google Scholar 

  19. Gilby, B., M. P. Weinstein, S. B. Alford, R. Baker, J. Cebrián, A. Chelsky, D. D. Colombano, R. M. Connolly, et al. this issue. Human impacts drive structural changes at multiple spatial scales across salt marsh seascapes that impinge upon ecosystem services. Estuaries and Coasts.

  20. Haddad, N.M., L.A. Brudvig, J. Clobert, K.F. Davies, A. Gonzalez, R.D. Holt, T.E. Lovejoy, J.O. Sexton, et al. 2015. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1. American Association for the Advancement of Science: e1500052. https://doi.org/10.1126/sciadv.1500052.

    Article  Google Scholar 

  21. Hanks, R.D., and K.J. Hartman. 2018. Evaluation of the influences of dam release types, land use, and habitat affecting abundance, richness, diversity, and community structure of larval and juvenile fish. Canadian Journal of Fisheries and Aquatic Sciences 76. NRC research press: 1388–1397. https://doi.org/10.1139/cjfas-2017-0107.

    Article  Google Scholar 

  22. Harris, J. M., W. R. James, J. S. Lesser, J. C. Doerr, and J. A. Nelson. this issue. Foundation species shift alters the energetic landscape of marsh nekton. Estuaries and Coasts.

  23. Harrison, X.A., L. Donaldson, M.E. Correa-Cano, J. Evans, D.N. Fisher, C.E.D. Goodwin, B.S. Robinson, D.J. Hodgson, et al. 2018. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6. PeerJ Inc.: e4794. https://doi.org/10.7717/peerj.4794.

    Article  Google Scholar 

  24. Hartley, S. B., B. R. Couvillion, and N. M. Enwright. 2017. Delineation of marsh types and marsh-type change in coastal Louisiana for 2007 and 2013. USGS Numbered Series 2017–5044. Delineation of marsh types and marsh-type change in coastal Louisiana for 2007 And 2013. Vol. 2017–5044. Scientific Investigations Report. Reston. Geological Survey. doi:https://doi.org/10.3133/sir20175044.

  25. He, H.S., B.E. DeZonia, and D.J. Mladenoff. 2000. An aggregation index (AI) to quantify spatial patterns of landscapes. Landscape Ecology 15 (7): 591–601. https://doi.org/10.1023/A:1008102521322.

    Article  Google Scholar 

  26. Hesselbarth, M.H.K., M. Sciaini, K.A. With, K. Wiegand, and J. Nowosad. 2019. Landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42 (10): 1648–1657. https://doi.org/10.1111/ecog.04617.

    Article  Google Scholar 

  27. Horinouchi, M. 2009. Horizontal gradient in fish assemblage structures in and around a seagrass habitat: some implications for seagrass habitat conservation. Ichthyological Research 56 (2): 109–125. https://doi.org/10.1007/s10228-008-0070-1.

    Article  Google Scholar 

  28. Horinouchi, M., P. Tongnunui, K. Nanjyo, Y. Nakamura, M. Sano, and H. Ogawa. 2009. Differences in fish assemblage structures between fragmented and continuous seagrass beds in Trang, southern Thailand. Fisheries Science 75 (6): 1409–1416. https://doi.org/10.1007/s12562-009-0166-1.

    CAS  Article  Google Scholar 

  29. Hovel, K.A., and R.N. Lipcius. 2001. Habitat fragmentation in a seagrass landscape: patch size and complexity control blue crab survival. Ecology 82 (7): 1814–1829. https://doi.org/10.1890/0012-9658(2001)082[1814:HFIASL]2.0.CO;2.

    Article  Google Scholar 

  30. Hovel, K.A., and R.N. Lipcius. 2002. Effects of seagrass habitat fragmentation on juvenile blue crab survival and abundance. Journal of Experimental Marine Biology and Ecology 271 (1): 75–98. https://doi.org/10.1016/S0022-0981(02)00043-6.

    Article  Google Scholar 

  31. Hovel, K.A., and H.M. Regan. 2008. Using an individual-based model to examine the roles of habitat fragmentation and behavior on predator-prey relationships in seagrass landscapes. Landscape Ecology 23 (S1): 75–89. https://doi.org/10.1007/s10980-007-9148-9.

    Article  Google Scholar 

  32. Ives, A.R. 2015. For testing the significance of regression coefficients, go ahead and log-transform count data. Methods in Ecology and Evolution 6 (7): 828–835. https://doi.org/10.1111/2041-210X.12386.

    Article  Google Scholar 

  33. Kimball, M., R. M. Connolly, S.B. Alford, D. D. Colombano, W. R. James, M. D. Kenworthy, G. S. Norris, J. Ollerhead, S. Ramsden, J. S. Rehage, E. L. Sparks, N. J. Waltham, T. A. Worthington, M. D. Taylor. this issue. Novel and emerging applications of technology for advancing tidal marsh ecology. Estuaries and Coasts.

  34. Kimball, M.E., K.W. Able, and T.M. Grothues. 2010. Evaluation of long-term response of intertidal creek nekton to Phragmites australis (common reed) removal in Oligohaline Delaware Bay salt marshes. Restoration Ecology 18 (5): 772–779. https://doi.org/10.1111/j.1526-100X.2009.00543.x.

    Article  Google Scholar 

  35. LDWF. 2002. Louisiana Department of Wildlife and Fisheries: Marine Fisheries Division Field Procedures Manual. Baton Rouge, LA: Louisiana Department of Wildlife and Fisheries.

    Google Scholar 

  36. Levin, S.A. 1992. The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73 (6): 1943–1967. https://doi.org/10.2307/1941447.

    Article  Google Scholar 

  37. MacArthur, R. H., and E. O. Wilson. 2001. The theory of island biogeography. Vol. 1. Princeton university press.

  38. Mace, M.M., and L.P. Rozas. 2015. Estimating natural mortality rates of juvenile white shrimp Litopenaeus setiferus. Estuaries and Coasts 38 (5): 1580–1592. https://doi.org/10.1007/s12237-014-9901-7.

    Article  Google Scholar 

  39. Mace, M.M., and L.P. Rozas. 2016. Population dynamics and secondary production of juvenile white shrimp (Litopenaeus setiferus) along an estuarine salinity gradient. Fishery Bulletin 115 (1): 74–88. https://doi.org/10.7755/FB.115.1.7.

    Article  Google Scholar 

  40. Mace, M.M., and L.P. Rozas. 2018. Fish predation on juvenile penaeid shrimp: examining relative predator impact and size-selective predation. Estuaries and Coasts 41 (7): 2128–2134. https://doi.org/10.1007/s12237-018-0409-4.

    Article  Google Scholar 

  41. Martinez Arbizu, P. 2020. pairwiseAdonis: pairwise multilevel comparison using adonis. R package version 0.4.

  42. Meyer, D.L., and M.H. Posey. 2014. Isolated salt marsh colonization by a resident species, mummichog (Fundulus heteroclitus), and a transient species, pinfish (Lagodon rhomboides). Journal of Experimental Marine Biology and Ecology 460: 197–210. https://doi.org/10.1016/j.jembe.2014.06.013.

  43. Meyer, D.L., and M.H. Posey. 2019. Salt marsh habitat size and location do matter: the influence of salt marsh size and landscape setting on nekton and estuarine finfish community structure. Estuaries and Coasts 42 (5): 1353–1373. https://doi.org/10.1007/s12237-019-00555-9.

    Article  Google Scholar 

  44. Meyer, C.B., S.L. Miller, and C.J. Ralph. 2002. Multi-scale landscape and seascape patterns associated with marbled murrelet nesting areas on the U.S. west coast. Landscape Ecology 17: 95–115. https://doi.org/10.1023/A:1016574928706.

    Article  Google Scholar 

  45. Minello, T.J., and L.P. Rozas. 2002. Nekton in Gulf Coast wetlands: fine-scale distributions, landscape patterns, and restoration implications. Source: Ecological Applications 12 (2): 441–455.

    Google Scholar 

  46. Minello, T. J., R. J. Zimmerman, and E. X. Martinez. 1987. Fish predation on juvenile brown shrimp, Penaeus aztecus Ives: effects of turbidity and substratum on predation rates.

  47. Minello, T.J., R.J. Zimmerman, and E.X. Martinez. 1989. Mortality of young Brown shrimp Penaeus aztecus in estuarine nurseries. Transactions of the American Fisheries Society 118. Taylor & Francis: 693–708. https://doi.org/10.1577/1548-8659(1989)118<0693:MOYBSP>2.3.CO;2.

    Article  Google Scholar 

  48. de Mutsert, K., J. Steenbeek, K. Lewis, J. Buszowski, J.H. Cowan, and V. Christensen. 2016. Exploring effects of hypoxia on fish and fisheries in the northern Gulf of Mexico using a dynamic spatially explicit ecosystem model. Ecological Modelling 331. Ecopath 30 years – Modelling ecosystem dynamics: Beyond boundaries with EwE: 142–150. https://doi.org/10.1016/j.ecolmodel.2015.10.013.

    CAS  Article  Google Scholar 

  49. de Mutsert, K., K. Lewis, S. Milroy, J. Buszowski, and J. Steenbeek. 2017. Using ecosystem modeling to evaluate trade-offs in coastal management: effects of large-scale river diversions on fish and fisheries. Ecological Modelling 360. Elsevier: 14–26. https://doi.org/10.1016/J.ECOLMODEL.2017.06.029.

    Article  Google Scholar 

  50. Nakagawa, S., and H. Schielzeth. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4 (2): 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x.

    Article  Google Scholar 

  51. Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, et al. 2019. Vegan: community ecology package.

  52. Osland, M.J., N. Enwright, R.H. Day, and T.W. Doyle. 2013. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States. Global Change Biology 19. Wiley online library: 1482–1494.

    Article  Google Scholar 

  53. Piazza, B.P., and M.K. La Peyre. 2009. The effect of Hurricane Katrina on nekton communities in the tidal freshwater marshes of Breton Sound, Louisiana, USA. Estuarine, Coastal and Shelf Science 83 (1): 97–104. https://doi.org/10.1016/j.ecss.2009.03.016.

    Article  Google Scholar 

  54. Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team. (2020). nlme: linear and nonlinear mixed effects models.

  55. Pittman, S. J., ed. 2018. Seascape ecology. John Wiley & Sons, Ltd.

  56. Rakocinski, C., D. Baltz, and J. Fleeger. 1992. Correspondence between environmental gradients and the community structure of marsh-edge fishes in a Louisiana estuary. Marine Ecology Progress Series 80: 135–148. https://doi.org/10.3354/meps080135.

    Article  Google Scholar 

  57. Rice, J.C. 2000. Evaluating fishery impacts using metrics of community structure. ICES Journal of Marine Science 57. Oxford academic: 682–688. https://doi.org/10.1006/jmsc.2000.0735.

    Article  Google Scholar 

  58. Rountree, R.A., and K.W. Able. 2007. Spatial and temporal habitat use patterns for salt marsh nekton: Implications for ecological functions. Aquatic Ecology 41 (1): 25–45. https://doi.org/10.1007/s10452-006-9052-4.

    CAS  Article  Google Scholar 

  59. Ryall, K.L., and L. Fahrig. 2006. Response of predators to loss and fragmentation of prey habitat: a review of theory. Ecology 87. Department of Biology, Carleton University, Ottawa, Ontario, Canada. kryall@nrcan.gc.ca: 1086–1093.

    Article  Google Scholar 

  60. Santos, R., D. Lirman, and J. Serafy. 2011. Quantifying freshwater-induced fragmentation of submerged aquatic vegetation communities using a multi-scale landscape ecology approach. Marine Ecology Progress Series 427: 233–246. https://doi.org/10.3354/meps08996.

    Article  Google Scholar 

  61. Santos, R.O., D. Lirman, S.J. Pittman, and J.E. Serafy. 2018. Spatial patterns of seagrasses and salinity regimes interact to structure marine faunal assemblages in a subtropical bay. Marine Ecology Progress Series 594: 21–38.

    Article  Google Scholar 

  62. Smith, A.C., N. Koper, C.M. Francis, and L. Fahrig. 2009. Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landscape Ecology 24. Springer: 1271.

    Article  Google Scholar 

  63. Stein, A., K. Gerstner, and H. Kreft. 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters 17 (7): 866–880. https://doi.org/10.1111/ele.12277.

    Article  Google Scholar 

  64. Trzcinski, M.K., L. Fahrig, and G. Merriam. 1999. Independent effects of forest cover and fragmentation on the distribution of forest breeding birds. Ecological Applications 9 (2): 586–593. https://doi.org/10.1890/1051-0761(1999)009[0586:IEOFCA]2.0.CO;2.

    Article  Google Scholar 

  65. Waltham, N.J., C. Alcott, M. Barbeau, J. Cebrian, R. Connolly, L. Deegan, K. Dodds, L. Gaines, et al. this issue. Tidal wetland restoration optimism in rapidly changing climate and seascape. Estuaries and Coasts.

  66. Wang, X., F.G. Blanchet, and N. Koper. 2014. Measuring habitat fragmentation: an evaluation of landscape pattern metrics. Methods in Ecology and Evolution 5. Wiley online library, 634: –646.

  67. Yeager, L.A., D.A. Keller, T.R. Burns, A.S. Pool, and F.J. Fodrie. 2016. Threshold effects of habitat fragmentation per se on fish diversity at landscapes scales. Ecology 97 (8): 2157–2166. https://doi.org/10.1002/ecy.1449.

    Article  Google Scholar 

  68. Zimmerman, R. J., and J. M. Nance. 2013. Effects of hypoxia on the shrimp fishery of Louisiana and Texas. In Coastal Hypoxia: Consequences for Living Resources and Ecosystems, 293–310. American Geophysical Union (AGU). doi:https://doi.org/10.1029/CE058p0293.

  69. Zuur, A.F., E.N. Ieno, and C.S. Elphick. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1 (1): 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Louisiana Department of Wildlife and Fisheries scientists and technicians for collection, processing, and curation of the dataset used in this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to W. Ryan James.

Additional information

Communicated by Mark S. Peterson

Electronic Supplementary Material

ESM 1

(DOCX 55 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

James, W.R., Topor, Z.M. & Santos, R.O. Seascape Configuration Influences the Community Structure of Marsh Nekton. Estuaries and Coasts (2020). https://doi.org/10.1007/s12237-020-00853-7

Download citation

Keywords

  • Seascape ecology
  • Habitat degradation
  • Patch shape
  • White shrimp
  • Brown shrimp